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Functions of unitaries with Sp-perturbations for
non-continuously differentiable functions
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Clément Coine

Abstract. Consider a function f : T → C, n-times differentiable on T and such that
its nth derivative f (n) is bounded but not necessarily continuous. Let U : R → U(H)
be a function taking values in the set of unitary operators on some separable Hilbert
space H. Let 1 < p < ∞ and let Sp(H) be the Schatten class of order p on H. If
Ũ : R ∋ t 7→ U(t) − U(0) is n-times Sp-differentiable on R, we show that the operator-
valued function φ : R ∋ t 7→ f(U(t))− f(U(0)) ∈ Sp(H) is n-times differentiable on R as
well. This theorem is optimal and extends several results related to the differentiability
of functions of unitaries. The derivatives of φ are given in terms of multiple operator
integrals, and a formula and Sp-estimates for the Taylor remainders of φ are provided.

1. Introduction. Let H be a separable complex Hilbert space. Let B(H)
denote the Banach space of bounded operators on H, and let U(H) be the
subset of unitary operators. For any 1 < p < ∞, Sp(H) will denote the
Schatten class of order p on H, that is, the Banach space defined by

Sp(H) = {A ∈ B(H) | ∥A∥p := Tr(|A|p)1/p <∞}.
The study of differentiability of operator functions was initiated in [11]. Since
then, it has attracted a lot of attention and significant refinements have been
obtained in [1, 3, 4, 6, 7, 12, 15–17, 19, 20, 24, 28]. This study has often
been motivated by problems in perturbation theory. For instance, various
fruitful efforts to prove the existence of spectral shift functions [18, 21, 22, 26]
naturally led to the question of the existence and the representation of the
derivatives of

φ : R ∋ t 7→ f(eitAU)− f(U),

where A = A∗ ∈ B(H), U ∈ U(H) and f : T → C is a function defined on T,
the unit circle of C. In [24], the authors proved that if f belongs to the Besov
class Bn

∞1(T), n ≥ 2, the nth order derivative of φ exists in the operator

2020 Mathematics Subject Classification: Primary 47B49; Secondary 47B10, 46L52, 47A55.
Key words and phrases: multiple operator integrals, differentiation of operator functions.
Received 17 November 2024; revised 13 May 2025.
Published online *.

DOI: 10.4064/sm241117-16-5 [1] © Instytut Matematyczny PAN, ***
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norm. For the Schatten classes, it was proved in [5] that if 1 < p < ∞
and A ∈ Sp(H), then, under the assumption f ∈ Cn(T), the function φ is
n-times continuously Sp-differentiable on R. In fact, stronger results hold
[5, Theorem 3.3]. The common denominator in all these results is the use of
the theory of multiple operator integrals, which can be seen as the measurable
counterparts of Schur multipliers. In particular, the derivatives of φ can be
expressed as multiple operator integrals or a linear combination of them,
with respect to the divided differences of f . See for instance [25, Theorem 3.7]
for the finite-dimensional case and [27, Theorem 5.3.4] or [5, Theorem 3.5]
for the infinite-dimensional case.

In the selfadjoint case, more is known. The analogous question is to in-
vestigate under which assumptions on g : R → C, the function

ψ : R ∋ t 7→ g(A+ tK)− g(A)

is differentiable, where A and K are selfadjoint with K bounded. When
g ∈ Cn(R) with bounded derivatives and K ∈ Sp with 1 < p < ∞, it is
known that ψ is Sp-differentiable with continuous derivatives [7, 17]. In fact,
the existence of ψ′ in the Sp-norm holds when the assumptions on g are
relaxed. Indeed, one of the striking results is given in [15], where the authors
proved that the condition “g differentiable on R with bounded derivative”
ensures the differentiability of ψ in the Sp-norm. This is a fundamental dif-
ference from the B(H) case, since it is known that the stronger condition
“g ∈ C1(R) with bounded derivative” is not sufficient for the existence of ψ′

in the operator norm [13]. A generalization of the aforementioned result for
the higher order differentiability of ψ has been established in [6], where it was
shown that if g is n-times differentiable with bounded derivatives g′, . . . , g(n),
then so is ψ. It appears that the corresponding result for functions of uni-
taries was not known, even in the case n = 1 and in the Hilbert–Schmidt
case S2(H). Namely, if we drop the assumption of continuity of the derivative
of f : T → C, do we have the differentiability of φ in S2(H) or even in Sp(H)?

In this paper, we solve this last question in two ways: first by requiring
the minimal assumptions on f , and secondly by obtaining the nth order
differentiability for the associated operator function. We prove (see Theo-
rem 5.1) that if 1 < p < ∞, f is an n-times differentiable function on
T with a bounded nth derivative f (n) and U : R → U(H) is such that
Ũ : R ∋ t 7→ U(t) − U(0) ∈ Sp(H) is n-times differentiable, then the
operator-valued function

φ : R ∋ t 7→ f(U(t))− f(U(0)) ∈ Sp(H)

is n-times differentiable on R. Moreover, if U has bounded derivatives, then
so does φ. We show that the explicit formulas for the derivatives of φ given
as a sum of multiple operator integrals, obtained with stronger assumptions
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in [5, 25, 27], also hold true at the degree of generality aimed at in this
paper. Note that this result is optimal: it is clear that if φ is differentiable
for every differentiable function U , then f itself must be differentiable. In
particular, this paper settles the question of Sp-differentiability for func-
tions of unitaries. Additionally, we explain in Remark 5.3 how to obtain a
representation of the Taylor remainder

Rn,f,U (t) := f(U(t))− f(U(0))−
n−1∑
m=1

1

m!
φ(m)(0),

as well as an estimate of its Sp-norm in the case U(t) = eitAU .
To achieve our results, we first have to establish important properties of

multiple operator integrals, such as their boundedness on Schatten classes
when they are associated to divided differences, and some of their properties
that will be suitable to study the differentiability of operator functions. Some
of the properties are similar to those in [5]; however, in this more general
setting, the proofs will require more care. In particular, our approach uses
the construction of multiple operator integrals as defined in [8], which is ap-
propriate for our study as it is very general. Next, we will show that with the
help of a Cayley transform, we can use the selfadjoint analogue of our main
result, proved in [6], to obtain our result in a particular case. This step is cru-
cial and this is where the biggest differences appear between the case when f
only has a bounded nth derivative, and the case when f has more regularity
such as f ∈ Cn(T). In the latter case, one can approximate f and its deriva-
tives uniformly (which yields stronger results), while when the assumptions
are relaxed, the approach of [6, 15] rests on the approximation of the opera-
tors appearing in the Sp-perturbation. Finally, the main result, Theorem 5.1,
will follow from a careful approximation of the path of unitaries.

The paper is organized as follows: In Section 2, we give the definition of
the divided differences of a function f and show that they can be approx-
imated by more regular functions in Lemmas 2.1 and 2.2. In Section 3, we
recall the definition of multiple operator integrals and establish some of their
properties such as Sp-boundedness in Theorem 3.3 and an important pertur-
bation formula in Proposition 3.5. In Section 4, we generalize the main result
of [6] to be able to apply it in Proposition 4.4, which is a weaker version of
our main result. Finally, Section 5 is dedicated to the proof of Theorem 5.1.
The proof will require two auxiliary results, Proposition 5.4 and Lemma 5.5,
which are the first steps towards an approximation argument used in the
proof of our main result.

Notations and conventions
• Whenever Z is a set and W ⊂ Z a subset, we let χW : Z → {0, 1}

denote the characteristic function of W .
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• As recalled at the beginning of the introduction, Sp(H) will denote the
p-Schatten class on a complex separable Hilbert space H, and Sp

sa(H) will
be the subset of selfadjoint operators in Sp(H). The Sp-norm of an element
K ∈ Sp(H) is denoted by ∥K∥p.

• Similarly, B(H) is the Banach space of bounded linear operators A :
H → H equipped with the operator norm, denoted by ∥A∥. We let Bsa(H)
denote the subset of bounded selfadjoint operators on H.

• Let f : T → C be a function. The derivative of f at z0 ∈ T is the limit

f ′(z0) := lim
z∈T, z→z0

f(z)− f(z0)

z − z0
,(1.1)

provided it exists.
• If φ : R → Sp(H) is an Sp(H)-valued function, we will say that φ is

differentiable at s ∈ R if the limit

φ′(s) := lim
t→s

φ(t)− φ(s)

t− s

exists in Sp(H). In that case, φ′(s) ∈ Sp(H).
• If T ∈ B(H), we let σ(T ) denote the spectrum of T . In particular, if

T ∈ U(H), then σ(T ) ⊂ T.
• For any k ∈ N, we will use the notation (T )k = T, . . . , T︸ ︷︷ ︸

k

.

• Let n ∈ N and let X1, . . . , Xn, Y be Banach spaces. We denote by
Bn(X1×· · ·×Xn, Y ) the space of bounded n-linear operators T : X1×· · ·×Xn

→ Y , equipped with the norm

∥T∥Bn(X1×···×Xn,Y ) := sup
∥xi∥≤1, 1≤i≤n

∥T (x1, . . . , xn)∥.

We will sometimes write ∥T∥ for the norm of T when no confusion can occur.
In the case when X1 = · · · = Xn = Y , we will simply denote this space
by Bn(Y ). Finally, note that Bn(S2(H)) is a dual space; see [8, Section 3.1]
for details.

2. Divided differences and approximation. In this section, we first
recall the definition of the divided differences of a function f and their prop-
erties. Then, we will give the construction of two sequences of elements of
Cn(T) which approximate, in a certain sense, the divided differences of a
function f with bounded nth derivative. Both constructions have advantages
and disadvantages, as explained before each statement.

Let f : T → C be a function defined on T. We define its divided difference
f [n] : Tn+1 → C recursively as follows. First, by convention f [0] = f . Next,
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if f is differentiable, f [1] : T2 → C is defined by

f [1](λ1, λ2) :=

{
f(λ1)−f(λ2)

λ1−λ2
if λ1 ̸= λ2,

f ′(λ1) if λ1 = λ2,
λ1, λ2 ∈ T.

Now, let n ∈ N and assume that f is n-times differentiable on T. The nth
divided difference f [n] : Tn+1 → C is defined by

f [n](λ1, λ2, . . . , λn+1) :=

{
f [n−1](λ1,λ3,...,λn+1)−f [n−1](λ2,λ3,...,λn+1)

λ1−λ2
if λ1 ̸=λ2,

∂1f
[n−1](λ1, λ3, . . . , λn+1) if λ1=λ2,

for all λ1, . . . , λn+1 ∈ T, where ∂1 stands for the partial derivative with
respect to the first variable.

The function f [n] is symmetric in the n + 1 variables (λ1, . . . , λn+1), it
is measurable, and f [n] is bounded if and only if f (n) is bounded. Indeed, it
follows from [10, Theorem 2.1] that there exists a constant dn such that

(2.1) ∥f [n]∥L∞(Tn+1) ≤ dn∥f (n)∥L∞(T).

In [10], the estimate for |f [n](λ1, . . . , λn+1)| was obtained for distinct λi, but
when f is n-times differentiable, the same inequality readily extends to every
point of Tn+1.

In the following, we give the first construction of a sequence (fj)j which
will approximate the derivatives of f and its divided differences. This con-
struction will allow us to obtain a satisfactory bound for the nth divided
difference of fj , which in turn will allow us to get a certain bound in Theo-
rem 3.3.

Lemma 2.1. Let n ∈ N and let f : T → C be an n-times differentiable
function such that f (n) is bounded. Then there exists a sequence (fj)j of
trigonometric polynomials on T such that:

(1) For every 1 ≤ k ≤ n − 1, the sequence (f
[k]
j )j, is uniformly convergent

to f [k] on Tk+1.
(2) The sequence (f

[n]
j )j is pointwise convergent to f [n] on the set

Tn+1 \ {(λ1, . . . , λn+1) | λ1 = · · · = λn+1}.
(3) For every j,

∥f [n]j ∥L∞(Tn+1) ≤ dn∥f (n)j ∥L∞(T) ≤ dn∥f (n)∥L∞(T),

where dn is the constant of (2.1).

Proof. For every j ∈ N, define fj := f ∗ Fj where Fj is the Fejér kernel,
that is,

∀z = eiθ ∈ T, fj(z) =

2π�

0

f(eit)Fj(θ − t)
dt

2π
=

2π�

0

f(ei(θ−t))Fj(t)
dt

2π
.
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For every j, fj is a trigonometric polynomial. Moreover, since f (n) is bounded,
it is well-known that fj is n-times differentiable on T and for every 1 ≤ k ≤ n,

∀z = eiθ ∈ T, f
(k)
j (z) =

2π�

0

f (k)(ei(θ−t))e−iktFj(t)
dt

2π
= (f (k) ∗ Fj,k)(z),

where Fj,k(t) = e−iktFj(t). In particular, according to (2.1) and by Young’s
inequality, we have, for every 1 ≤ k ≤ n,

∥f [k]j ∥L∞(Tk+1) ≤ dk∥f
(k)
j ∥L∞(T) ≤ dk∥f (k)∥L∞(T)∥Fj,k∥L1(T)

= dk∥f (k)∥L∞(T)∥Fj∥L1(T)

= dk∥f (k)∥L∞(T).

Next, it is a classical fact that for every 1 ≤ k ≤ n− 1,

f
(k)
j −−−→

j→∞
f (k) uniformly on T.

By (2.1), this yields

∥f [k]−f [k]j ∥L∞(Tk+1) = ∥(f −fj)[k]∥L∞(Tk+1) ≤ dk∥f (k)−f
(k)
j ∥L∞(T) −−−→

j→∞
0.

Now, let (λ1, . . . , λn+1) ∈ Tn+1 be outside the diagonal of Tn+1. Let 1 ≤ i

≤ n be such that λi ̸= λi+1. It follows from the symmetry of f [n]j that

f
[n]
j (λ1, . . . , λn+1)

=
f
[n−1]
j (λ1, . . . , λi, λi+2, . . . , λn+1)− f

[n−1]
j (λ1, . . . , λi−1, λi+1, . . . , λn+1)

λi − λi+1
.

Hence, the pointwise convergence of (f [n−1]
j )j to f [n−1] implies the conver-

gence of (f [n]j (λ1, . . . , λn+1))j to f [n](λ1, . . . , λn+1).

The next lemma gives the construction of another sequence of functions
(fj)j whose advantage is that (f

[n]
j )j is pointwise convergent to f [n] every-

where. However, it is not clear that we can estimate the derivatives f (n)j
as efficiently as in Lemma 2.1. For that reason, and even if we can have a
better estimate, we will only prove that the derivatives are bounded, which
is enough for our purpose. This result will be useful in Section 4, as it will
allow us to circumvent certain combinatorial and computational difficulties;
see Proposition 4.4.

Lemma 2.2. Let n ∈ N and let f : T → C be an n-times differentiable
function such that f (n) is bounded. Then there exists a sequence (fj)j ⊂
Cn(T) such that:
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(1) For every 1 ≤ k ≤ n− 1, the sequence (f
[k]
j )j is uniformly convergent to

f [k] on Tk+1.
(2) The sequence (f

[n]
j )j is pointwise convergent to f [n] on Tk+1.

(3) There exists a constant M > 0 such that, for every 1 ≤ k ≤ n and every
j ∈ N,

∥f (k)j ∥L∞(T) ≤M.

Proof. For a function g : T → C, we let g̃ : R → C be the 2π-periodic
function defined for every t ∈ R by g̃(t) = g(eit). Then g is n-times differ-
entiable on T if and only if g̃ is n-times differentiable on R. Moreover, by
induction (or using Faà di Bruno’s formula), we can prove that for every
1 ≤ k ≤ n, there exist constants a1,k, . . . , ak,k, b1,k, . . . , bk,k ∈ C independent
of g (which we do not need to make explicit) such that, for every eit ∈ T,

(2.2) g̃(k)(t) =

k∑
p=1

ap,ke
iptg(p)(eit) and g(k)(eit) = e−ikt

k∑
p=1

bp,kg̃
(p)(t).

For any j ∈ N, define f̃j : R → C by

∀t ∈ R, f̃j(t) = j

t�

0

(f̃(u+ 1/j)− f̃(u)) du+ f̃(0).

Then f̃j is 2π-periodic, f̃j ∈ Cn(R) and for every 1 ≤ k ≤ n and every t ∈ R,

(2.3) f̃
(k)
j (t) = j

(
f̃ (k−1)(t+ 1/j)− f̃ (k−1)(t)

)
.

It is then easy to check that for every 1 ≤ k ≤ n− 1,

(2.4) f̃
(k)
j −−−→

j→∞
f̃ (k) uniformly on R

and

(2.5) f̃
(n)
j −−−→

j→∞
f̃ (n) pointwise on R.

Moreover, for every 1 ≤ k ≤ n,

(2.6) ∀t ∈ R, |f̃ (k)j (t)| ≤ ∥f̃ (k)∥L∞(R).

Let us show that the sequence (fj)j , where fj(eit) = f̃j(t), satisfies con-
ditions (1)–(3). First, fj is n-times differentiable on T, and according to (2.2)
we have, for every 1 ≤ k ≤ n,

f
(k)
j (eit) = e−ikt

k∑
p=1

bp,kf̃
(p)
j (t).

It follows that f (k)j is continuous on T so that fj ∈ Cn(T). Moreover, for
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1 ≤ k ≤ n− 1 and by (2.4), (f (k)j )j is uniformly convergent to the function

z = eit 7→ e−ikt
k∑

p=1

bp,kf̃
(p)(t) = f (k)(eit),

and similarly, by (2.4) and (2.5),

(2.7) f
(n)
j −−−→

j→∞
f (n) pointwise on T.

Hence, according to (2.1), we find that for 1 ≤ k ≤ n− 1,

∥f [k]−f [k]j ∥L∞(Tk+1) = ∥(f −fj)[k]∥L∞(Tk+1) ≤ dk∥f (k)−f
(k)
j ∥L∞(T) −−−→

j→∞
0,

which gives (1). As in the proof of Lemma 2.1, it also follows that (f
[n]
j )j is

pointwise convergent to f [n] outside the diagonal of Tk+1, and if (λ, . . . , λ)
∈ Tn+1 we have, by (2.7),

f
[n]
j (λ, . . . , λ) =

1

n!
f
(n)
j (λ) −−−→

j→∞

1

n!
f (n)(λ) = f [n](λ, . . . , λ),

which proves that (fj)j satisfies (2).
Finally, by (2.6), the sequences (f̃ (k)j )j , 1 ≤ k ≤ n, are uniformly bounded

on R, and by (2.2), this implies that the sequences (f (k)j )j , 1 ≤ k ≤ n, are uni-
formly bounded on T. This yields (3) and finishes the proof of the lemma.

3. Multiple operator integrals. In this section, we first recall the def-
inition of multiple operator integrals as constructed in [8, Section 3]. Other
approaches to operator integration require a certain regularity of the sym-
bol, while this construction is more general and thus fits in with this paper’s
scope. For other approaches, we refer to [27], as well as the references therein.
Next, we extend the result on the Sp-boundedness of such mappings when
the symbol is a divided difference f [n] for a (non-continuously) n-times dif-
ferentiable function f with bounded nth derivative. Finally, we prove an
important perturbation formula and give some of its consequences, which
are key for our analysis.

3.1. Definition and background. Let A be a normal operator on H.
In this paper, A will be a unitary operator most of the time, but we will
also need the case of selfadjoint operators in Section 4. Denote by EA

the corresponding spectral measure. For any bounded Borel function f :
σ(A) → C, one defines an element f(A) ∈ B(H) by setting

f(A) :=
�

σ(A)

f(t) dEA(t).
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According to [9, Section 15], there exists a finite positive measure λA on
the Borel subsets of σ(A) such that EA and λA have the same sets of mea-
sure zero. If f : σ(A) → C is bounded, then by [9, Theorem 15.10], the
operator f(A) only depends on the class of f in L∞(λA) and it induces a
w∗-continuous ∗-representation

L∞(λA) ∋ f 7→ f(A) ∈ B(H).

The measure λA is called the scalar-valued spectral measure for A.
Let n ∈ N, and let A1, . . . , An+1 be normal operators on H with scalar-

valued spectral measures λA1 , . . . , λAn+1 Let

Γ : L∞(λA1)⊗ · · · ⊗ L∞(λAn+1) → Bn(S2(H))

be the linear map such that for any fi ∈ L∞(λAi), 1 ≤ i ≤ n + 1, and for
any K1, . . . ,Kn ∈ S2(H),

[Γ (f1 ⊗ · · · ⊗ fn+1)](K1, . . . ,Kn)

= f1(A1)K1f2(A2)K2 · · · fn(An)Knfn+1(An+1).

The space L∞(λA1) ⊗ · · · ⊗ L∞(λAn+1) is w∗-dense in L∞(
∏n+1

i=1 λAi), and
according to [8, Proposition 3.4 and Corollary 3.9], Γ extends to a unique
w∗-continuous isometry denoted by

ΓA1,...,An+1 : L∞
(n+1∏
i=1

λAi

)
→ Bn(S2(H)).

As recalled in the introduction, Bn(S2(H)) is a dual space, and the w∗-conti-
nuity of ΓA1,...,An+1 means that if a net (φi)i∈I in L∞(

∏n+1
i=1 λAi) converges

to φ ∈ L∞(
∏n+1

i=1 λAi) in the w∗-topology, then for any K1, . . . ,Kn ∈ S2(H),
the net

([ΓA1,...,An+1(φi)](K1, . . . ,Kn))i∈I

converges to [ΓA1,...,An+1(φ)](K1, . . . ,Kn) weakly in S2(H).

Definition 3.1. For φ ∈ L∞(
∏n+1

i=1 λAi), the transformation

ΓA1,...,An+1(φ)

is called the multiple operator integral associated to A1, . . . , An+1 and φ. The
element φ is sometimes referred to as the symbol of the multiple operator
integral.

To conclude this subsection, note that one can define

ΓA1,...,An+1(φ) : S2(H)× · · · × S2(H) → S2(H)

for any bounded Borel function φ : U → C such that
∏n+1

i=1 σ(Ai) ⊂ U by
setting

ΓA1,...,An+1(φ) := ΓA1,...,An+1(φ̃),

where φ̃ is the class of the restriction φ|σ(A1)×···×σ(An+1) in L∞(
∏n+1

i=1 λAi).
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3.2. Sp-boundedness and perturbation estimate. Let 1< p <∞,
n ∈ N, and let U1, . . . , Un+1 be unitaries on H. In this subsection, we
first establish that for every n-times differentiable function f on T with
bounded nth derivative, for the symbol φ = f [n], we have ΓU1,...,Un+1(f [n])
∈ Bn(Sp(H)).

More precisely, and more generally, we will show the following. If
1 < p, pj < ∞, j = 1, . . . , n are such that 1/p = 1/p1 + · · · + 1/pn and
S2(H) ∩ Spj (H) is equipped with the ∥ · ∥pj -norm, the n-linear mapping

ΓU1,...,Un+1(f [n]) : (S2(H) ∩ Sp1(H))× · · · × (S2(H) ∩ Spn(H)) → Sp(H)

is bounded. In particular, by density, it uniquely extends to an element

ΓU1,...,Un+1(f [n]) ∈ Bn(Sp1(H)× · · · × Spn(H),Sp(H)).

This result has been established for n = 1 and a Lipschitz function f on
T in [2, Theorem 2], and in [5, Theorem 2.3] for general n ∈ N and f with
continuous nth derivative f (n). The selfadjoint counterpart of this result, that
is, for an n-times differentable function g : R → C with bounded derivatives
g′, . . . , g(n), has been proved in [6, Theorem 2.7]. We will need this fact in
Section 4 when considering functions of selfadjoint operators.

Let us start with the following lemma which is the unitary analogue of
[6, Lemma 2.3]. It will be used throughout this paper. Note that it holds
true even for normal operators, with the same proof.

Lemma 3.2. Let n ∈ N and let p1, . . . , pn, p ∈ (1,∞) be such that 1/p =
1/p1 + · · ·+1/pn. Let U1, . . . , Un+1 be unitary operators on H. Let (φk)k≥1,
φ ∈ L∞(

∏n+1
i=1 λUi) and assume that (φk)k is w∗-convergent to φ and that

there exists C ≥ 0 such that, for every k ≥ 1,

∥ΓU1,...,Un+1(φk)∥Bn(Sp1×···×Spn ,Sp) ≤ C.

Then ΓU1,...,Un+1(φ) ∈ Bn(Sp1 × · · · × Spn ,Sp) and

∥ΓU1,...,Un+1(φ)∥Bn(Sp1×···×Spn ,Sp) ≤ C.

Moreover, for any Xi ∈ Spi(H), 1 ≤ i ≤ n,

[ΓU1,...,Un+1(φk)](X1, . . . , Xn) −−−→
k→∞

[ΓU1,...,Un+1(φ)](X1, . . . , Xn)

weakly in Sp(H).

The following states that [5, Theorem 2.3] remains true when we drop
the assumption of continuity of f (n). It is crucial because it ensures that all
the operators that will appear in the rest of the paper belong to Sp(H).

Theorem 3.3. Let n ∈ N and let f : T → C be n-times differentiable
such that f (n) is bounded. Let 1 < p, pj < ∞, j = 1, . . . , n, be such that
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1/p = 1/p1 + · · ·+ 1/pn. Let U1, . . . , Un+1 be unitary operators on H. Then

ΓU1,...,Un+1(f [n]) ∈ Bn(Sp1(H)× · · · × Spn(H),Sp(H))

and there exists Cp,n > 0 depending only on n, p1, . . . , pn such that

(3.1) ∥ΓU1,...,Un+1(f [n])∥Bn(Sp1 (H)×···×Spn (H),Sp(H)) ≤ Cp,n∥f (n)∥L∞(T).

In particular, ΓU1,...,Un+1(f [n]) ∈ Bn(Sp(H)), with

(3.2) ∥ΓU1,...,Un+1(f [n])∥Bn(Sp) ≤ Cp,n∥f (n)∥L∞(T).

To prove this theorem, we will need the following lemma. It is certainly
well-known to specialists but we include a proof for the convenience of the
reader.

Lemma 3.4. Let n ∈ N and let f : T → C be n-times differentiable
such that f (n) is bounded. Let 1 < p, pj < ∞, j = 1, . . . , n, be such that
1/p = 1/p1 + · · · + 1/pn. Let U1, . . . , Un+1 be unitary operators on H. Let
∆ := {(λ1, . . . , λn+1) | λ1 = · · · = λn+1} be the diagonal of Tn+1. Then

ΓU1,...,Un+1(f [n]χ∆) ∈ Bn(Sp1(H)× · · · × Spn(H),Sp(H))

and
∥ΓU1,...,Un+1(f [n]χ∆)∥ ≤ 1

n!
∥f (n)∥L∞(T).

Proof. Let (gk)k be a sequence of continuous functions converging point-
wise to f (n) on T and such that for every k, ∥gk∥L∞(T) ≤ ∥f (n)∥L∞(T) (take

e.g. gk(z)=
k(f (n−1)(zei/k)−f (n−1)(z))

iz ). Let g̃k be defined, for any (λ1, . . . , λn+1)
in Tn+1, by

g̃k(λ1, . . . , λn+1) =
1

n!
gk(λ1)χ∆(λ1, . . . , λn+1).

Note that

(f [n]χ∆)(λ1, . . . , λn+1) =
1

n!
f (n)(λ1)χ∆(λ1, . . . , λn+1).

Hence, by Lebesgue’s dominated convergence theorem, (g̃k)k w∗-converges
to f [n]χ∆ in L∞(λU1 ×· · ·×λUn+1). In particular, to prove the lemma, it suf-
fices, according to Lemma 3.2, to prove that ΓU1,...,Un+1(g̃k) ∈ Bn(Sp1(H)×
· · · × Spn(H),Sp(H)) with norm less than 1

n!∥f
(n)∥L∞(T). To simplify the

notations, set h := 1
n!gr and h̃ := g̃r for some fixed r ∈ N.

Let m ∈ N. Let Am,k := {e2iπt | k/2m ≤ t < (k + 1)/2m} and define
P j
m,k := EUj (Am,k). Then

∑2m−1
k=0 P j

m,k = IH for every 1 ≤ j ≤ n + 1. Let
2 ≤ q ≤ n and let K ∈ Spq(H). Define

Um(t) =
2m−1∑
k=0

eiktP q
m,k and Vm(t) =

2m−1∑
k=0

e−iktP q+1
m,k .
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For every t ∈ R, Um(t) and Vm(t) are unitaries on H and we have

Um(t)KVm(t) =
2m−1∑
k,l=0

ei(k−l)tP q
m,kKP

q+1
m,l ,

so that
1

2π

2π�

0

Um(t)KVm(t) dt =
2m−1∑
k=0

P q
m,kKP

q+1
m,k ,

which in turn yields

(3.3)
∥∥∥2m−1∑

k=0

P q
m,kKP

q+1
m,k

∥∥∥
pq

≤ 1

2π

2π�

0

∥Um(t)KVm(t)∥pq dt = ∥K∥pq .

For q = 1, one defines

Ũm(t) :=
2m−1∑
k=0

h(e2iπk/2
m
)eiktP 1

m,k and Vm(t) =
2m−1∑
k=0

e−iktP 2
m,k.

Then ∥Ũm(t)∥ ≤ ∥h∥L∞(T) and proceeding as above, we get

(3.4)
∥∥∥2m−1∑

k=0

h(e2iπk/2
m
)P 1

m,kKP
2
m,k

∥∥∥
p1

≤ ∥h∥L∞(T)∥K∥p1 ≤ 1

n!
∥f (n)∥L∞(T)∥K∥p1 .

Next, let Em,k =
∏n+1

i=1 Am,k be the Cartesian product of n+1 copies of Am,k.
Define

φm :=

2m−1∑
k=0

h(e2iπk/2
m
)χEm,k

.

For every 1 ≤ i ≤ n, let Ki ∈ Spi(H). We have, by definition of multiple
operator integrals and by orthogonality,

[ΓU1,...,Un+1(φm)](K1, . . . ,Kn)

=
2m−1∑
k=0

h(e2iπk/2
m
)P 1

m,kK1P
2
m,k · · ·Pn

m,kKnP
n+1
m,k

=
(2m−1∑

k=0

h(e2iπk/2
m
)P 1

m,kK1P
2
m,k

)
·
(2m−1∑

k=0

P 2
m,kK2P

3
m,k

)
· · ·

(2m−1∑
k=0

Pn
m,kKnP

n+1
m,k

)
.
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It follows from (3.3) and (3.4) that

∥[ΓU1,...,Un+1(φm)](K1, . . . ,Kn)∥p ≤
1

n!
∥f (n)∥L∞(T)∥K1∥p1 · · · ∥Kn∥pn .

Next, we show that φm −−−−→
m→∞

h̃ pointwise on Tn+1. First, let (λ, . . . , λ)

∈ Tn+1 be on the diagonal of Tn+1. Write λ = e2iπt where 0 ≤ t < 1, and
for every m ∈ N let km be the unique integer such that 0 ≤ km ≤ 2m − 1
and λ ∈ Am,km . Then, for every m, we have km

2m ≤ t < km+1
2m , which implies

that limm→∞
km
2m = t. In particular, by continuity of h,

φm(λ, . . . , λ) = h(e2iπkm/2m) −−−−→
m→∞

h(e2iπt) = h(λ) = h̃(λ, . . . , λ).

If (λ1, . . . , λn+1) /∈ ∆, then, for every m large enough and for every 0 ≤ k ≤
2m − 1, (λ1, . . . , λn+1) /∈ Em,k, so that

φm(λ1, . . . , λn+1) = 0 = h̃(λ1, . . . , λn+1).

To conclude the proof, notice that ∥φm∥L∞(Tn+1) ≤ ∥h̃∥L∞(Tn+1), hence,
by Lebesgue’s dominated convergence theorem, (φm)m w∗-converges to h̃ =
g̃r in L∞(λU1 × · · · × λUn+1). Using Lemma 3.2, we get

∥ΓU1,...,Un+1(g̃r)∥ ≤ 1

n!
∥f (n)∥L∞(T),

and the conclusion of the lemma follows.

We now turn to the proof of Theorem 3.3.

Proof of Theorem 3.3. Let ∆ := {(λ1, . . . , λn+1) | λ1 = · · · = λn+1}. By
Lemma 3.4,

ΓU1,...,Un+1(f [n]χ∆) ∈ Bn(Sp1(H)× · · · × Spn(H),Sp(H))

with norm at most 1
n!∥f

(n)∥L∞(T). Hence, it suffices to show the bound-
edness of ΓU1,...,Un+1(f [n](1 − χ∆)). Let (fj)j be the sequence of trigono-
metric polynomials given by Lemma 2.1. Let Tj := ΓU1,...,Un+1(f

[n]
j ) and

T̃j := ΓU1,...,Un+1(f
[n]
j χ∆). According to [5, Theorem 2.3] and Lemma 3.4,

Tj , T̃j ∈ Bn(Sp1(H)× · · · × Spn(H),Sp(H)),

and there exists a constant cp,n > 0 such that

∥Tj∥ ≤ cp,n∥f (n)j ∥L∞(T) ≤ cp,n∥f (n)∥L∞(T),

∥T̃j∥ ≤ 1

n!
∥f (n)j ∥L∞(T) ≤

1

n!
∥f (n)∥L∞(T).

Notice that 1 − χ∆ = χΩ where Ω := Tn+1 \ ∆, so that, according to
Lemma 2.1, f [n]j (1− χ∆) is pointwise convergent to f [n](1− χ∆) and

∥f [n]j (1− χ∆)∥L∞(Tn+1) ≤ ∥f [n]j ∥L∞(Tn+1) ≤ dn∥f (n)∥L∞(T).
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Hence, (f [n]j (1−χ∆))j w
∗-converges to f [n](1−χ∆) in L∞(λU1×· · ·×λUn+1).

Since

∥ΓU1,...,Un+1(f
[n]
j (1− χ∆))∥ = ∥Tj − T̃j∥ ≤

(
cp,n +

1

n!

)
∥f (n)∥L∞(T),

it follows from Lemma 3.2 that ΓU1,...,Un+1(f [n](1− χ∆)) ∈ Bn(Sp1(H)× · · ·
× Spn(H),Sp(H)) and

∥ΓU1,...,Un+1(f [n](1− χ∆))∥ ≤
(
cp,n +

1

n!

)
∥f (n)∥L∞(T).

This concludes the proof of the theorem.

The next proposition is a crucial perturbation formula. It is key whenever
the differentiability of operator functions with Sp-perturbation is studied. In
the unitary setting, it generalizes [5, Proposition 3.5] where the result was
proved for f ∈ Cn(T).

Proposition 3.5. Let 1 < p < ∞ and n ∈ N≥2. Let U1, . . . , Un−1,
U, V ∈ U(H) be such that U − V ∈ Sp(H). Let f : T → C be n-times
differentiable on T such that f (n) is bounded. Then, for all K1, . . . ,Kn−1 ∈
Sp(H) and for any 1 ≤ i ≤ n we have

[ΓU1,...,Ui−1,U,Ui,...,Un−1(f [n−1])−ΓU1,...,Ui−1,V,Ui,...,Un−1(f [n−1])](K1, . . . ,Kn−1)

= [ΓU1,...,Ui−1,U,V,Ui,...,Un−1(f [n])](K1, . . . ,Ki−1, U − V,Ki, . . . ,Kn−1).

Proof. Fix 1 ≤ i ≤ n and let (fj)j ⊂ Cn(T) be given by Lemma 2.2. By
[5, Proposition 2.5], we have

(3.5)

[ΓU1,...,Ui−1,U,Ui,...,Un−1(f
[n−1]
j )−ΓU1,...,Ui−1,V,Ui,...,Un−1(f

[n−1]
j )](K1, . . . ,Kn−1)

= [ΓU1,...,Ui−1,U,V,Ui,...,Un−1(f
[n]
j )](K1, . . . ,Ki−1, U − V,Ki, . . . ,Kn−1).

The sequence (f
(n−1)
j )j is uniformly convergent to f (n−1) on T. It follows

from Theorem 3.3 that

ΓU1,...,Ui−1,U,Ui,...,Un−1(f
[n−1]
j ) −−−→

j→∞
ΓU1,...,Ui−1,U,Ui,...,Un−1(f [n−1]),

ΓU1,...,Ui−1,V,Ui,...,Un−1(f
[n−1]
j ) −−−→

j→∞
ΓU1,...,Ui−1,V,Ui,...,Un−1(f [n−1])

in Bn(Sp(H)). In particular, they converge pointwise, that is,

[ΓU1,...,Ui−1,U,Ui,...,Un−1(f
[n−1]
j )−ΓU1,...,Ui−1,V,Ui,...,Un−1(f

[n−1]
j )](K1, . . . ,Kn−1)

−−−→
j→∞

[ΓU1,...,Ui−1,U,Ui,...,Un−1(f [n−1])−ΓU1,...,Ui−1,V,Ui,...,Un−1(f [n−1])](K1, . . . ,Kn−1)
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in Sp(H). Next, by Lemma 2.2 and Lebesgue’s dominated convergence the-
orem, the sequence (f

[n]
j )j w

∗-converges to f [n] in L∞(λU1 × · · · × λUi−1 ×
λU × λV × λUi × · · · × λUn+1). It follows from Lemma 3.2 that

[ΓU1,...,Ui−1,U,V,Ui,...,Un−1(f
[n]
j )](K1, . . . ,Ki−1, U − V,Ki, . . . ,Kn−1)

converges weakly (in Sp(H)) to

[ΓU1,...,Ui−1,U,V,Ui,...,Un−1(f [n])](K1, . . . ,Ki−1, U − V,Ki, . . . ,Kn−1).

Hence, taking the limit as j → ∞ in (3.5) in the weak topology of Sp(H)
yields the desired identity.

Corollary 3.6. Let 1 < p < ∞ and let n ∈ N≥2. Let U, V ∈ U(H) be
such that U −V ∈ Sp(H). Let f : T → C be n-times differentiable on T such
that f (n) is bounded. Then, for all K1, . . . ,Kn−1 ∈ Sp(H),

[Γ (U)n(f [n−1])− Γ (V )n(f [n−1])](K1, . . . ,Kn−1)

=
n∑

i=1

[Γ (U)i,(V )n−i+1
(f [n])](K1, . . . ,Ki−1, U − V,Ki, . . . ,Kn−1).

Proof. It suffices to write

[Γ (U)n(f [n−1])− Γ (V )n(f [n−1])](K1, . . . ,Kn−1)

=
n∑

i=1

[Γ (U)i,(V )n−i
(f [n−1])− Γ (U)i−1,(V )n−i+1

(f [n−1])](K1, . . . ,Kn−1)

and then apply Proposition 3.5.

Corollary 3.7. Let 1 < p < ∞ and let n ∈ N≥2. Let U1, . . . , Un,
V1, . . . , Vn ∈ U(H) be such that Ui − Vi ∈ Sp(H) for every 1 ≤ i ≤ n. Let
f : T → C be n-times differentiable on T such that f (n) is bounded. Then
there exists Dp,n > 0 such that

∥[ΓU1,...,Un(f [n−1])− Γ V1,...,Vn(f [n−1])]∥Bn−1(Sp(H))

≤ Dp,n∥f (n)∥L∞(T) max
1≤k≤n

∥Uk − Vk∥p.

Proof. Let K1, . . . ,Kn−1 ∈ Sp(H). By Proposition 3.5, we have

[ΓU1,...,Un(f [n−1])− Γ V1,...,Vn(f [n−1])](K1, . . . ,Kn−1)

=

n∑
k=1

[ΓU1,...,Uk,Vk+1,...,Vn(f [n−1])− ΓU1,...,Uk−1,Vk,...,Vn(f [n−1])](K1, . . . ,Kn−1)

=
n∑

k=1

[ΓU1,...,Un−k,Vn−k,...,Vn(f [n])](K1, . . . ,Kk−1, Uk − Vk,Kk, . . . ,Kn−1).
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By Theorem 3.3, there exists a constant Cp,n such that

∥[ΓU1,...,Un(f [n−1])− Γ V1,...,Vn(f [n−1])](K1, . . . ,Kn−1)∥p
≤ n max

1≤k≤n
∥[ΓU1,...,Un−k,Vn−k,...,Vn(f [n])](K1, . . . ,Kk−1, Uk − Vk,Kk, . . . ,Kn−1)∥p

≤ nCp,n∥f (n)∥L∞(T) max
1≤k≤n

∥Uk − Vk∥p∥K1∥p · · · ∥Kn−1∥p.

This concludes the proof of the corollary.

Remark 3.8. Proposition 3.5 and Corollary 3.7 also hold true for n = 1.
For the perturbation formula, this means that if U, V ∈ U(H) are such that
U − V ∈ Sp(H) and f : T → C is differentiable with bounded f ′, then

f(U)− f(V ) = [ΓU,V (f [1])](U − V ).

We refer e.g. to [4]. Alternatively, for a more recent reference, we can first
use [5, Proposition 2.5] for f ∈ C1(T) (the proof works verbatim for n = 1),
and then some minor modifications to the proof of Proposition 3.5 will give
the desired formula. The bound given in Corollary 3.7 for n = 1 simply
corresponds to [2, Theorem 2].

4. From selfadjoint to unitary operators. In this section, we will
prove a general result on the differentiability of operator functions in the self-
adjoint case and then deduce its unitary counterpart using a Cayley trans-
form. This will be the first step towards our main theorem in Section 5.

Let A : R → Bsa(H) be such that R ∋ t 7→ A(t) − A(0) ∈ Sp
sa(H) is

n-times differentiable, and let f be an n-times differentiable function on R.
We will show that the function

ψ : R ∋ t 7→ f(A(t))− f(A(0)) ∈ Sp(H)

is n-times differentiable as well. The particular case A(t) = A + tK, where
A ∈ Bsa(H) and K ∈ Sp

sa(H), is the main result of [6]. We will outline the
minor changes to make in the proof of [6, Theorem 3.1] as well as in the
results therein to obtain our general result in Corollary 4.2.

Let us start with the following, which is the key step prior to a combina-
torial reasoning.

Theorem 4.1. Let 1 < p < ∞, and let A : R → Bsa(H) be such that
Ã : R ∋ t 7→ A(t)−A(0) ∈ Sp

sa(H) is differentiable in a neighborhood I of 0.
Let n ∈ N≥2. For every 1 ≤ i ≤ n− 1, let Si : R → Sp

sa(H) be differentiable
on R. Let f be n-times differentiable on R such that f (n) is bounded and
consider the function

ψ : R ∋ t 7→ [Γ (A(t))n(f [n−1])](S1(t), . . . , Sn−1(t)) ∈ Sp(H).
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Then ψ is differentiable on I and for every t ∈ I,

ψ′(t) =
n−1∑
k=1

[Γ (A(t))n(f [n−1])](S1(t), . . . , Sk−1(t), S
′
k(t), Sk+1(t), . . . , Sn−1(t))

+
n∑

k=1

[Γ (A(t))n+1
(f [n])](S1(t), . . . , Sk−1(t), Ã′(t), Sk(t), . . . , Sn−1(t)).

Proof. Let us explain the simple modifications to make in [6] to obtain
the result. Throughout the proof, we denote A := A(0) ∈ Bsa(H). Define,
for K,X1, . . . , Xn−1 ∈ Sp

sa,

ψK,X1,...,Xn−1 : R ∋ t 7→ [Γ (A+tK)n(f [n−1])](X1, . . . , Xn−1).

We first want to prove that ψK,X1,...,Xn−1 is differentiable at 0. Assume that
for every K0 in a dense subset of Sp

sa, ψK0,X1,...,Xn−1 is differentiable at 0
with

ψ′
K0,X1,...,Xn−1

(0) =
n∑

k=1

[Γ (A)n+1
(f [n])](X1, . . . , Xk−1,K0, Xk, . . . , Xn−1).

Then, arguing as in the proof of [6, Lemma 3.7], one shows that for every
K ∈ Sp

sa, ψK,X1,...,Xn−1 is differentiable at t = 0 with the same formula for
its derivative. Next, as explained in [15] or in the proof of [6, Theorem 3.1],
one can choose

F := {i[A, Y ] + Z | Y, Z ∈ Sp
sa(H) and Z commutes with A}

as a dense subset of Sp
sa(H). Then we can assume that K = i[A, Y ] +Z ∈ F

and we have to show that ψK,X1,...,Xn−1 is differentiable at t = 0. The first
part of the proof of [6, Theorem 3.1] applies and it tells us that ψK,X1,...,Xn−1

has a derivative at 0 if and only if

ξ : R ∋ t 7→
n∑

k=1

[Γ (A+tZ)n−k+1,(A)k(f [n])](X1, . . . , Xn−k,K,Xn−k+1, . . . , Xn−1)

has a limit at 0 (in Sp), and in that case, this limit is ψ′
K,X1,...,Xn−1

(0).
But notice that by continuity of multiple operator integrals (the operators
Γ (A+tZ)n−k+1,(A)k(f [n]) are uniformly bounded with respect to t ∈ R), it is
enough to show that this limit exists when X1, . . . , Xn−1 are elements of the
dense subset F . Hence, one can write Xi = i[A, Yi] + Zi. The rest of the
proof is similar, with obvious modifications, and shows that ξ has indeed a
limit at 0 equal to
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(4.1) ψ′
K,X1,...,Xn−1

(0)

=

n∑
k=1

[Γ (A)n+1
(f [n])](X1, . . . , Xn−k,K,Xn−k+1, . . . , Xn−1),

as expected.
Now, let us come back to the function ψ. It is sufficient to prove the

formula for t = 0. Let K := A′(0). By a straightforward modification of
[6, Lemma 3.8], ψ is differentiable at 0 if and only if

ψ̃ : R ∋ t 7→ [Γ (A+tK)n(f [n−1])](S1(t), . . . , Sn−1(t)) ∈ Sp(H)

is differentiable at 0, and in that case ψ′(0) = ψ̃′(0). Let us write, for every
1 ≤ i ≤ n− 1,

Si(t) = Si(0) + tS′
i(0) + oi(t)

where oi(t)=o(t) depends on i. By uniform boundedness of Γ (A+tK)n(f [n−1])
for t ∈ R, and by the multilinearity of operator integrals, we can write

ψ̃(t) = [Γ (A+tK)n(f [n−1])](S1(0), . . . , Sn−1(0))

+ t
n−1∑
k=1

[Γ (A+tK)n(f [n−1])](S1(0), . . . , Sk−1(0), S
′
k(0), Sk+1(0), . . . , Sn−1(0))

+ o(t).

By the first part of the proof, ψ̃ is differentiable at 0, and by (4.1), we get
the desired formula.

Corollary 4.2. Let 1 < p < ∞ and let n ∈ N. Let A : R → Bsa(H) be
such that Ã : R ∋ t 7→ A(t) − A(0) ∈ Sp

sa(H) is n-times differentiable in a
neighborhood I of 0. Let f be n-times differentiable on R such that f (n) is
bounded. Then the function

ψ : R ∋ t 7→ f(A(t))− f(A(0)) ∈ Sp(H)

is n-times differentiable on I and for every integer 1 ≤ k ≤ n and every
t ∈ I,

(4.2) ψ(k)(t) =

k∑
m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
[Γ (A(t))m+1

(f [m])](Ã(l1)(t), . . . , Ã(lm)(t)).

Proof. We prove the result by induction on n. The case n = 1 follows
from [15, Theorem 7.13]. When n ≥ 2, using Theorem 4.1 and employing
a combinatorial reasoning as in the proof of [27, Theorem 5.3.4] gives the
result. We leave the details to the reader.
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Remark 4.3. When f ∈ Cn(R), the result of Corollary 4.2 can be proved
using [17, Theorem 3.3] instead of Theorem 4.1.

The next proposition corresponds to the main result of this paper (see
Theorem 5.1) but with an additional assumption on the function t 7→ U(t)
valued in the unitary operators. We will need it to prove the same result in
full generality in Section 5. The proof makes use of Corollary 4.2 which is
the corresponding result for selfadjoint operators. We will need the Cayley
transform to change the function t 7→ f(U(t)) − f(U(0)) into a function
t 7→ g(A(t))− g(A(0)) where A is valued in the set of selfadjoint operators
on H. Denote by η : R → T\{1} the Cayley transform and by η−1 its inverse
function, defined by

η : R → T \ {1}, η−1 : T \ {1} → R,

x 7→ x+ i

x− i
, z 7→ i

z + 1

z − 1
.

If A ∈ Bsa(H), then η(A) ∈ U(H) and σ(η(A)) ⊂ T \ {1}, and conversely, if
U ∈ U(H) is such that 1 /∈ σ(U), then η−1(U) ∈ Bsa(H).

Proposition 4.4. Let 1 < p <∞ and n ∈ N. Let U : R → U(H) be such
that the function Ũ : R ∋ t 7→ U(t)− U(0) ∈ Sp(H) is n-times differentiable
on R and assume that 1 /∈ σ(U(0)). Let f : T → R be n-times differentiable
with bounded nth derivative f (n). Consider the operator-valued function

φ : t 7→ f(U(t))− f(U(0)) ∈ Sp(H).

Then φ is n-times differentiable in a neighborhood I of 0 and for every t ∈ I,

(4.3) φ(n)(t)

=
n∑

m=1

∑
l1,...,lm≥1

l1+···+lm=n

n!

l1! · · · lm!
[Γ (U(t))m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t)).

Proof. By continuity of U , U(t) → U(0) as t → 0 in the operator norm,
and since 1 /∈ σ(U(0)) and the spectrum is closed, there is an a > 0 and
a real interval I around 0 such that, for every t ∈ I, σ(U(t)) ⊂ Ca where
Ca := {z ∈ T | |z−1| > a}. Note that all functions of operators and multiple
operator integrals only depend on the values of the associated function on the
spectra of the operators. In particular, one can extend η−1 from Ca to a C∞

function on the whole T if necessary. Let us define, for every t ∈ I, A(t) =
η−1(U(t)) ∈ Bsa(H). Note that for every t ∈ I, Ã(t) := A(t)−A(0) ∈ Sp(H).
Indeed, this follows either from [2, Theorem 2] or by the straightforward
identity
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A(t)−A(0) = −2i(U(t)− I)−1(U(t)− U(0))(U(0)− I)−1,

which yields

∥A(t)−A(0)∥p ≤ 2∥(U(t)− I)−1∥ · ∥U(t)− U(0)∥p · ∥(U(0)− I)−1∥ <∞.

Moreover, A is n-times differentiable on I. This follows either from [5, The-
orem 3.5] or simply by using the fact that η−1 is a rational function so one
can use standard algebraic identities as above. Let g : R ∋ t 7→ f(η(t)) and
note that

φ(t) = f(η(η−1(U(t))))− f(η(η−1(U(0)))) = g(A(t))− g(A(0)).

The function g is n-times differentiable and since f and η have bounded
derivatives, g has bounded derivatives as well. By Corollary 4.2, φ is n-times
differentiable on I and for every t ∈ I,

φ(n)(t) =
n∑

m=1

∑
l1,...,lm≥1

l1+···+lm=n

n!

l1! · · · lm!
[Γ (A(t))m+1

(g[m])](Ã(l1)(t), . . . , Ã(lm)(t))

:=
n∑

m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
g,A (t).

It remains to show that for a fixed t ∈ I,

φ(n)(t) =

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

n!

l1! · · · lm!
[Γ (U(t))m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t))

:=
n∑

m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
f,U (t).

To prove this, let (fj)j ⊂ Cn(T) be the sequence given by Lemma 2.2. Then,
for every j ∈ N, the function

φj : t 7→ fj(U(t))− f(U(0)) ∈ Sp(H)

is n-times differentiable on I and
(4.4)

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
fj ,U

(t)
(a)
= φ

(n)
j (t)

(b)
=

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
fj◦η,A (t).

Indeed, since fj ∈ Cn(T), the equality (a) comes from [5, Theorem 3.5],
while (b) follows from the computations performed for f in the first part of
the proof.
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Fix 1 ≤ m ≤ n and let l1, . . . , lm ≥ 1 be such that l1 + · · · + lm
= n. The assumptions on (fj)j ensure that (f

[m]
j )j w

∗-converges to f [m]

in L∞(λU(t) × · · · × λU(t)). By Lemma 3.2, it follows that

Dm,l1,...,lm
fj ,U

(t) −−−→
j→∞

Dm,l1,...,lm
f,U (t)

weakly in Sp(H). On the other hand, by [23, Lemma 2.3], we have, for every
(λ1, . . . , λm+1) ∈ Rm+1,

(fj ◦ η)[m](λ1, . . . , λm+1)

=
m∑
k=1

∑
1=i0<···<ik=m+1

(−1)k+1im−k+1

2m−k+1
f
[k]
j (η(λi0), . . . , η(λik))

×
k−1∏
j=1

(η(λij )− 1)2
∏

l∈{1,...,m+1}\{i1,...,ik−1}

(η(λl)− 1).

This holds true as well if fj is replaced by f , with the same proof. In particu-
lar, the pointwise convergence of f [k]j to f [k] implies the pointwise convergence
of ((fj ◦ η)[m])j to (f ◦ η)[m] = g[m]. Together with the boundedness of each
(f

[k]
j )j and hence the boundedness of ((fj◦η)[m])j , we get the w∗-convergence

of ((fj ◦ η)[m])j to g[m] in L∞(λA(t) × · · · × λA(t)). By Lemma 3.2 and the
paragraph preceding it, it follows that

Dm,l1,...,lm
fj◦η,A (t) −−−→

j→∞
Dm,l1,...,lm

g,U (t)

weakly in Sp(H). Finally, after taking the limit as j → ∞ in the weak
topology of Sp(H) in (4.4), we obtain

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
f,U (t) =

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

Dm,l1,...,lm
g,A (t),

which gives the desired formula for φ(n)(t) and concludes the proof.

Remark 4.5. Proposition 4.4 holds true as well if we simply assume that
σ(U(0)) ̸= T. Indeed, by picking eiθ /∈ σ(U(0)) and changing the function
U to e−iθU (in that case, 1 /∈ σ(e−iθU(0))) and f to h(z) = f(eiθz) we
get φ : R ∋ t 7→ f(U(t)) − f(U(0)) = h(e−iθU(t)) − h(e−iθU(0)) so that
φ is differentiable in a neighborhood of 0. Moreover, it is easy to check
that h[n](λ1, . . . , λn+1) = einθf [n](eiθλ1, . . . , e

iθλn+1) and (e−iθŨ)(l1)(t) =
e−iθŨ (l1)(t) so that



22 C. Coine

φ(k)(t)

=
k∑

m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
[Γ (e−iθU(t))m+1

(h[m])](e−iθŨ (l1)(t), . . . , e−iθŨ (lm)(t))

=

k∑
m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
[Γ (e−iθU(t))m+1

((f [m])r)](Ũ
(l1)(t), . . . , Ũ (lm)(t)),

where (f [m])r(λ1, . . . , λm+1) = f [m](eiθλ1, . . . , e
iθλm+1). It is now easy to

check (using the construction of multiple operator integrals) that

Γ (e−iθU(t))m+1
((f [m])r) = Γ (U(t))m+1

(f [m]).

5. Sp-differentiability for non-continuously differentiable func-
tions. In this section, we will prove the following main result of this paper.

Main Theorem 5.1. Let 1 < p < ∞ and n ∈ N. Let U : R → U(H)
be such that the function Ũ : R ∋ t 7→ U(t) − U(0) ∈ Sp(H) is n-times
differentiable on R. Let f : T → R be n-times differentiable with bounded nth
derivative f (n). Consider the operator-valued function

φ : t 7→ f(U(t))− f(U(0)) ∈ Sp(H).

Then φ is n-times differentiable on R and for every integer 1 ≤ k ≤ n and
every t ∈ R,

(5.1)

φ(k)(t) =

k∑
m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
[Γ (U(t))m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t)).

Remark 5.2. It follows from the boundedness of multiple operator in-
tegrals given by Theorem 3.3 that if Ũ has bounded derivatives, then so
does φ.

Remark 5.3. (1) Once the formula for the derivatives of φ has been
established, it is easy to check, by induction, that the operator Taylor re-
mainder defined by

Rn,f,U (t) := f(U(t))− f(U(0))−
n−1∑
k=1

1

k!
φ(k)(0)

satisfies, for any t ∈ R,
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Rn,f,U (t)

=

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

[ΓU(t),(U(0))m(f [m])]

(
Rl1,U (t),

Ũ (l2)(0)

l2!
, . . . ,

Ũ (lm)(0)

lm!

)
,

where R1,U (t) := Ũ(t) and for any l1 ≥ 2,

Rl1,U (t) := Ũ(t)−
l1−1∑
k=1

1

k!
Ũ (k)(0).

We refer to the proof of [5, Proposition 3.5(ii)] for more details and references.
(2) Theorem 5.1 applies in particular to the function U(t) = eitAU with

U ∈ U(H) and A ∈ Sp
sa(H), and we retrieve [5, Corollary 3.6] in the more

general case of a function f with (not necessarily continuous) bounded nth
derivative. In particular, with the same proof as for [5, Corollary 3.6], we
obtain

(5.2) ∥Rn,f,U (1)∥p/n ≤ c̃p,n

n∑
m=1

∥f (m)∥∞∥A∥np ,

where c̃p,n is a positive constant depending on p and n.

To prove Theorem 5.1, we will carefully approximate, on a subspace of
the Hilbert space H, the unitary operator U(0) by another unitary whose
spectrum is not the whole T, in order to use Proposition 4.4. The relevant
definitions and the first properties of the approximation are given in Sec-
tion 5.1. The key auxiliary results from Lemma 5.5 will detail the regularity
of this approximation process.

5.1. Approximation of unitaries. Let V ∈ U(H). For every j ≥ 1,
define Aj := {e2iπt | 0 ≤ t ≤ (j − 1)/j} and set Pj := EV (Aj). Then (Pj)j≥1

is an increasing sequence of selfadjoint projections which converges strongly
to IH. Recall that this implies that for every K ∈ Sp(H), PjK, KPj and
PjKPj converge to K in Sp as j → ∞. Moreover, Pj commutes with V and
the operator Vj := PjV Pj = PjV = V Pj is unitary on the Hilbert space
Hj := PjH and its spectrum satisfies σ(Vj) ⊂ Aj .

Note that if K ∈ Sp(H), then PjKPj ∈ Sp(H) with ∥PjKPj∥p ≤ ∥K∥p
and we can see PjKPj as an element of Sp(Hj). Similarly, if X ∈ Sp(Hj),
we can extend X on H and keep denoting this operator by X, and in that
case PjXPj = X|Hj

⊕ 0H⊥
j
.

Proposition 5.4. Let 1 < p < ∞. Let A ∈ Sp
sa(H) and define Aj :=

PjAPj. Let n ∈ N≥2 and let f : T → C be n-times differentiable such that
f (n) is bounded.
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(1) For every K1, . . . ,Kn−1 ∈ Sp(H) and every j ∈ N,

[Γ (eiAjVj)
n
(f [n−1])](K1,j , . . . ,Kn−1,j)

= [Γ (eiAjV )n(f [n−1])](K1,j , . . . ,Kn−1,j),

where Ki,j := PjKiPj.
(2) For every K1, . . . ,Kn ∈ Sp(H),

[Γ (V Pj)
n+1

(f [n])](K1,j , . . . ,Kn,j)
∥·∥p−−−→
j→∞

[Γ (V )n+1
(f [n])](K1, . . . ,Kn).

Proof. Let us prove (1). Recall that since f [n−1] is bounded, we have,
by construction, Γ (eiAjVj)

n
(f [n−1]) ∈ Bn−1(S2(H)). Let us first etablish the

formula when K1, . . . ,Kn−1 ∈ S2(H). Since f [n−1] is continuous on Tn it is
sufficient, by a simple approximation argument, to prove the formula when
f [n−1] is replaced by a trigonometric polynomial φ on Tn and by linearity,
we can assume that φ = f1 ⊗ · · · ⊗ fn, where for any 1 ≤ i ≤ n, fi is a
trigonometric polynomial on T. Since Pj commutes with eiAj and with V , it
is easy to check that for every 1 ≤ i ≤ n,

fi(e
iAjVj)Pj = Pjfi(e

iAjVj) = Pjfi(e
iAjV ) = fi(e

iAjV )Pj .

It follows that

[Γ (eiAjVj)
n
(φ)](K1,j , . . . ,Kn−1,j)

= f1(e
iAjVj)PjK1Pjf2(e

iAjVj)PjK2Pj · · ·PjKn−1Pjfn(e
iAmVj)

= f1(e
iAjV )PjK1Pjf2(e

iAjV )PjK2Pj · · ·PjKn−1Pjfn(e
iAjV )

= [Γ (eiAjV )n(φ)](K1,j , . . . ,Kn−1,j).

This proves the formula for φ = f [n−1] and K1, . . . ,Kn−1 ∈ S2(H). In par-
ticular, the formula holds true when Ki ∈ S2 ∩ Sp, and approximating (in
the Sp-norm) any Ki ∈ Sp by a sequence of elements of S2 ∩ Sp and using
the fact that Γ (eiAjVj)

n
(f [n−1]), Γ (eiAjV )n(f [n−1]) ∈ Bn−1(Sp(H)), we obtain

the desired formula.
For the proof of (2), we only make some minor changes: we first etablish

that for every K1, . . . ,Kn ∈ S2(H),

(5.3) [Γ (V Pj)
n+1

(f [n])](K1,j , . . . ,Kn,j) = [Γ (V )n(f [n])](K1,j , . . . ,Kn,j).

Since f [n] ∈ L∞(
∏n+1

i=1 λV ), by the w∗-density of L∞(λV )⊗ · · · ⊗L∞(λV ) in
L∞(

∏n+1
i=1 λV ) and the w∗-continuity of multiple operator integrals (see the

paragraph before Definition 3.1), it is sufficient to prove the identity when f [n]
is replaced by φ ∈ L∞(λV )⊗ · · · ⊗L∞(λV ), and by linearity, we can further
assume φ = f1⊗· · ·⊗fn+1, where for any 1≤ i≤n+1, fi∈L∞(λV ). Note that
V Pj = V χAj (V ) = gi(V ) where gi(x) = xχAj (x) and it is straightforward



Functions of unitaries for non-C1 functions 25

to check that (fi ◦ gi)χAj = fiχAj . By [14, Corollary 5.6.29], we have

fi(V Pj)Pj = (fi ◦ gi)(V )χAj (V ) = ((fi ◦ gi)χAj )(V ) = fi(V )χAj (V )

= fi(V )Pj ,

and similarly, Pjfi(V Pj) = Pjfi(V ). The same computations performed to
prove (1) show that (5.3) holds true. Moreover, this formula extends, as
before, when K1, . . . ,Kn ∈ Sp(H). Finally, the fact that Ki,j → Ki in Sp(H)

for every 1 ≤ i ≤ n together with Γ (V )n+1
(f [n]) ∈ Bn(Sp(H)) yield

[Γ (V Pj)
n+1

(f [n])](K1,j , . . . ,Kn,j) = [Γ (V )n+1
(f [n])](K1,j , . . . ,Kn,j)

−−−−→
m→∞

[Γ (V )n+1
(f [n])](K1, . . . ,Kn)

in Sp(H), which concludes the proof.

5.2. Proof of the main result. In this subsection, we will prove The-
orem 5.1. First of all, we need the following lemma. We postpone its proof
to the end of the paper to avoid repeating certain arguments and computa-
tions which, for some of them, will be very similar to those in the proof of
Theorem 5.1.

Lemma 5.5. Let 1 < p < ∞ and n ∈ N. Let V ∈ U(H). Let A : R →
Sp
sa(H) be n-times differentiable on R with A(0) = 0. Define

U(t) := eiA(t)V and Ũ(t) := eiA(t)V − V ∈ Sp(H),

and, for every j ∈ N,

Aj(t) := PjA(t)Pj , Uj(t) := eiAj(t)Vj and Ũj(t) := Uj(t)−Uj(0) ∈ Sp(H),

where Pj and Vj = V Pj are defined at the beginning of Section 5.1. Then we
have the following properties:

(1) For every ϵ > 0, there exist J ∈ N and α > 0 such that

(5.4) ∀j ≥ J, ∀|t| < α, ∥eiA(t)V − eiAj(t)V ∥p ≤ ϵ|t|.
(2) There exist α > 0 and a constant C > 0 such that

(5.5) ∀j ∈ N, ∀|t| < α, ∥eiA(t)V −V ∥p ≤ C|t| and ∥eiAj(t)V −V ∥p ≤ C|t|.

(3) For every j ∈ N, Ũ and Ũj are n-times differentiable on R and for every
0 ≤ k ≤ n and every t ∈ R,

(5.6) PjŨj
(k)

(t)Pj = Ũj
(k)

(t).

(4) For every ϵ > 0, there exist J ∈ N and α > 0 such that, for every
1 ≤ k ≤ n− 1,

(5.7) ∀j ≥ J, ∀|t| < α, ∥Ũ (k)(t)− Ũj
(k)

(t)∥p ≤ ϵ.
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(5) Let 0 ≤ k ≤ n− 1. Then we can write

Ũ (k)(t) = Ũ (k)(0) + tRk(t) and Ũj
(k)

(t) = Ũj
(k)

(0) + tRj
k(t),

where, for every ϵ > 0, there exist J ∈ N and α > 0 such that

(5.8) ∀j ≥ J, ∀|t| < α, ∥Rk(t)−Rj
k(t)∥p ≤ ϵ.

Proof of Theorem 5.1. The proof will be divided into three steps. First,
we show that we can rewrite the function U in a convenient way. Next, we
will approximate the unitary U(0) in order to use Proposition 4.4. Finally,
thanks to several estimates that will be using Lemma 5.5, we will obtain the
result.

Step 1. Simplification of the function U . First of all, note that by trans-
lation, it is sufficient to prove the result for t = 0. Let

V := U(0) ∈ U(H).

By continuity of U , U(t)V ∗ → IH as t→ 0 in the operator norm, so that, for
t ∈ I where I is a real interval centered at t = 0, we have ∥U(t)V ∗ − IH∥
< 1/2. In particular, we can set A(t) := −i log(U(t)V ∗) and we find that
A(t) ∈ Bsa(H). This function satisfies A(0) = 0 and eiA(t)V = U(t). More-
over, the assumption U(t)− U(0) ∈ Sp(H) implies that A(t) ∈ Sp

sa(H), and
since A(t) is obtained by means of a power series, the fact that Ũ : R →
Sp(H) is n-times differentiable on R implies that A : I → Sp

sa(H) is n-times
differentiable on I. Alternatively, since log is C∞ in a neighborhood of 1,
this follows from [5, Theorem 3.5]. Hence, from now on, we will assume that

∀t ∈ I, U(t) = eiA(t)V,

where A has the properties given above.

Step 2. Initiation of the approximation process. For every j ≥ 1, define
Aj := {e2iπt | 0 ≤ t ≤ (j − 1)/j} and set, as in Section 5.1,

Pj := EV (Aj).

Recall that the operator Vj := PjV Pj = PjV = V Pj is unitary on the
Hilbert space Hj := PjH and its spectrum satisfies σ(Vj) ⊂ Aj . Define

Aj(t) := PjA(t)Pj , Uj(t) := eiAj(t)Vj and Ũj(t) := Uj(t)− Uj(0) ∈ Sp,

where Aj(t) and Ũj(t) can be seen as elements of either Sp(Hj) or Sp(H).
Now, define

φj : R ∋ t 7→ f(Uj(t))− f(Uj(0)) ∈ Sp(Hj).

The operator φj(t) acts as well on H and is equal to 0 on H⊥
j . Since

eiAj(t)Vj ∈ U(Hj) and σ(Vj) ⊂ Aj and hence σ(Vj) ̸= T, by Proposition 4.4
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and Remark 4.5, φj is n-times differentiable in a neighborhood of 0, which
we can assume to be equal to I, so that we can write, for every t ∈ I,

(5.9) φ
(n−1)
j (t)− φ

(n−1)
j (0)− tφ

(n)
j (0) = oj(t),

where oj(t) = o(t) depends on j, and where φ(n−1)
j and φ

(n)
j are given by

formula (5.1).
Since f ∈ Cn−1(T), by [5, Theorem 3.5], φ is (n− 1)-times differentiable

on R and for every t ∈ R,

φ(n−1)(t)

=
n−1∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n−1

(n− 1)!

l1! · · · lm!
[Γ (U(t))m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t)).

Let us define

T :=
n∑

m=1

∑
l1,...,lm≥1

l1+···+lm=n

n!

l1! · · · lm!
[Γ (V )m+1

(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0)),

Tj :=

n∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n

n!

l1! · · · lm!
[Γ (Vj)

m+1
(f [m])](Ũj

(l1)
(0), . . . , Ũj

(lm)
(0)).

In particular, φ(n)
j (0) = Tj . To prove the theorem, we have to show that

(5.10) φ(n−1)(t)− φ(n−1)(0)− tT = o(t)

as t → 0. Note that if n = 1, we do not use [5, Theorem 3.5], and (5.10)
reduces to

f(U(t))− f(V )− t[Γ V,V (f [1])](Ũ ′(0)) = o(t).

To prove our claim, let us write, for every j ∈ N,

(5.11) φ(n−1)(t)− φ(n−1)(0)− tT

= Lj(t)− t(T − Tj) +
(
φ
(n−1)
j (t)− φ

(n−1)
j (0)− tφ

(n)
j (0)

)
,

where

(5.12) Lj(t) := φ(n−1)(t)− φ
(n−1)
j (t) + φ

(n−1)
j (0)− φ(n−1)(0).

First, we will estimate the quantity T − Tj uniformly for j large enough,
and secondly, we will estimate the term Lj(t) for t small enough and j large
enough. Eventually, we will use (5.9) to estimate the last term appearing
in (5.11), for a fixed integer j.
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Step 3. Estimates in the approximation process. Let us fix ϵ > 0.

Estimate of T − Tj . Let 1 ≤ m ≤ n and let l1, . . . , lm ≥ 1 be such that
l1 + · · ·+ lm = n. According to Proposition 5.4(2), if j ≥ J1 is large enough,

∥[Γ (V )m+1
(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0))

− [Γ (Vj)
m+1

(f [m])](PjŨ
(l1)(0)Pj , . . . , PjŨ

(lm)(0)Pj)∥p ≤ ϵ,

and, according to Lemma 5.5(3)(4), and to the uniform boundedness of
(Γ (Vj)

m+1
(f [m]))j , if j ≥ J2 is large enough,

∥[Γ (Vj)
m+1

(f [m])](PjŨ
(l1)(0)Pj , . . . , PjŨ

(lm)(0)Pj)

− [Γ (Vj)
m+1

(f [m])](Ũj
(l1)

(0), . . . , Ũj
(lm)

(0))∥p ≤ ϵ.

It follows that for every j ≥ max {J1, J2} =: J ,

∥[Γ (V )m+1
(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0))

− [Γ (Vj)
m+1

(f [m])](Ũj
(l1)

(0), . . . , Ũj
(lm)

(0))∥p ≤ 2ϵ.

Hence, since T and Tj are finite sums of such terms, there exist a constant
c0 and an integer J0 such that

(5.13) ∀j ≥ J0, ∥T − Tj∥p ≤ c0ϵ.

Estimate of Lj(t). Recall that

φ
(n−1)
j (t)

=
n−1∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n−1

(n− 1)!

l1! · · · lm!
[Γ (Uj(t))

m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t))

=

n−1∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n−1

(n− 1)!

l1! · · · lm!
[Γ (eiAj(t)V )m+1

(f [m])](Ũj
(l1)

(t), . . . , Ũj
(lm)

(t)),

where the last equality follows from Lemma 5.5(3) and Proposition 5.4(1).
When t = 0, eiAj(0)V = V so we have

φ
(n−1)
j (0)

=
n−1∑
m=1

∑
l1,...,lm≥1

l1+···+lm=n−1

(n− 1)!

l1! · · · lm!
[Γ (V )m+1

(f [m])](Ũj
(l1)

(0), . . . , Ũj
(lm)

(0)).

Fix 1 ≤ m ≤ n− 1 and l1, . . . , lm ≥ 1 such that l1 + · · ·+ lm = n− 1. From
the expression (5.12) of Lj(t), according to the latter and by linearity, if we
show that
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Qj(t) := [Γ (eiA(t)V )m+1
(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t))

− [Γ (eiAj(t)V )m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t))

+ [Γ (V )m+1
(f [m])](Ũj

(l1)
(0), . . . , Ũj

(lm)
(0))

− [Γ (V )m+1
(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0))

satisfies ∥Qj(t)∥p ≤ cϵ|t| for some constant c depending only on p,m,
l1, . . . , lm, f and where j is large enough and t small enough, a similar in-
equality will hold true for ∥Lj(t)∥p.

Let us write
Qj(t) = S1,j(t) + S2,j(t) + S3,j(t),

where

S1,j(t) = [Γ (eiA(t)V )m+1
(f [m])− Γ (eiAj(t)V )m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t)),

S2,j(t) = [Γ (eiAj(t)V )m+1
(f [m])− Γ (V )m+1

(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t))

+ [Γ (V )m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t))

− [Γ (eiAj(t)V )m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t)),

S3,j(t) = [Γ (V )m+1
(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t))

− [Γ (V )m+1
(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0))

+ [Γ (V )m+1
(f [m])](Ũj

(l1)
(0), . . . , Ũj

(lm)
(0))

− [Γ (V )m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t)).

First, since Ũ is n-times differentiable and 1 ≤ lk ≤ n−1, the derivatives
Ũ (lk) are Sp-bounded in a neighborhood of 0. Hence, according to Corol-
lary 3.7 and Lemma 5.5(1), there exist a constant c1, an integer J1 and
α > 0 such that

(5.14) ∀j ≥ J1, ∀|t| < α, ∥S1,j(t)∥p ≤ c1∥eiAj(t)V − eiA(t)V ∥ ≤ c1ϵ|t|.
Next, according to Corollary 3.6, we have

S2,j(t) = t
m+1∑
q=1

(
[Γ (eiAj(t)V )q ,(V )m−q+1

(f [m+1])]

(
Ũ (l1)(t), . . . , Ũ (lq−1)(t),

eiAj(t)V − V

t
, Ũ (lq)(t), . . . , Ũ (lm)(t)

)
− [Γ (eiAj(t)V )q ,(V )m−q+1

(f [m+1])](
Ũj

(l1)
(t), . . . , Ũj

(lq−1)
(t),

eiAj(t)V − V

t
, Ũj

(lq)
(t), . . . , Ũj

(lm)
(t)

))
.
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According to Lemma 5.5(2)(4), there exist β > 0 and an integer J2 ∈ N such
that, for every 1 ≤ k ≤ m, every j ≥ J2 and every |t| < β,

∥Ũ (lk)(t)− Ũj
(lk)

(t)∥p ≤ ϵ and
∥∥∥∥eiAj(t)V − V

t

∥∥∥∥
p

is bounded.

Since Ũ (lk)(t) and Ũj
(lk)

(t), 1 ≤ k ≤ m, are locally bounded around 0, and
since the operators Γ (eiAj(t)V )q ,(V )m−q+1

(f [m+1]) are uniformly bounded with
respect to t, there exists a constant C depending on p, m, f and U such
that

(5.15) ∀j ≥ J2, ∀|t| < β, ∥S2,j(t)∥p ≤ |t|
m+1∑
i=1

Cϵ =: c2ϵ|t|.

Finally, to estimate S3,j(t), let us write, according to Lemma 5.5(5),

Ũ (lk)(t) = Ũ (lk)(0) + tRlk(t) and Ũj
(lk)

(t) = Ũj
(lk)

(0) + tRj
lk
(t).

It follows that

[Γ (V )m+1
(f [m])](Ũ (l1)(t), . . . , Ũ (lm)(t))

− [Γ (V )m+1
(f [m])](Ũ (l1)(0), . . . , Ũ (lm)(0))

=
∑

Ai(t)∈{Ũ(li)(0), tRli
(t)}

∃1≤i≤m,Ai(t)=tRli
(t)

[Γ (V )m+1
(f [m])](A1(t), . . . , Am(t)),

and similarly

[Γ (V )m+1
(f [m])](Ũj

(l1)
(0), . . . , Ũj

(lm)
(t))

− [Γ (V )m+1
(f [m])](Ũj

(l1)
(t), . . . , Ũj

(lm)
(t))

=
∑

Bj
i (t)∈{Ũj

(li)(0), tRj
li
(t)}

∃1≤i≤m,Bj
i (t)=tRj

li
(t)

[Γ (V )m+1
(f [m])](Bj

1(t), . . . , B
j
m(t)).

Hence, we only have to estimate the terms

[Γ (V )m+1
(f [m])](A1(t), . . . , Am(t))− [Γ (V )m+1

(f [m])](Bj
1(t), . . . , B

j
m(t)),

where Ai(t) = Ũ (li)(0) if and only if Bj
i (t) = Ũj

(li)
(0). Moreover, to simplify

the notations, we assume that A1(t) = tRl1(t) and Bj
1(t) = tRj

l1
(t). In that

case,
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[Γ (V )m+1
(f [m])](A1(t), . . . , Am(t))− [Γ (V )m+1

(f [m])](B1(t), . . . , Bm(t))

= t
(
[Γ (V )m+1

(f [m])](Rl1(t), A2(t), . . . , Am(t))

− [Γ (V )m+1
(f [m])](Rj

l1
(t), Bj

2(t), . . . , B
j
m(t))

)
.

According to Lemma 5.5(4)(5), there exist an integer J ′
3 and γ′ > 0 such

that, for every 2 ≤ i ≤ m,

∀j ≥ J ′
3, ∀|t| < γ′, ∥Rl1(t)−Rj

l1
(t)∥ ≤ ϵ and ∥Ai(t)−Bj

i (t)∥p ≤ ϵ.

It follows that there exists a constant C ′ > 0 such that

∥[Γ (V )m+1
(f [m])](A1(t), . . . , Am(t))− [Γ (V )m+1

(f [m])](Bj
1(t), . . . , B

j
m(t))∥p
≤ C ′ϵ|t|.

In particular, there exist an integer J3, γ > 0 and a constant c3 > 0 such
that

(5.16) ∀j ≥ J3, ∀|t| < γ, ∥S3,j(t)∥p ≤ c3ϵ|t|.
Setting c = c1 + c2 + c3, δ = min {α, β, γ} and J := max {J1, J2, J3}, we
deduce from (5.14)–(5.16) that

(5.17) ∀j ≥ J, ∀|t| < δ, ∥Qj(t)∥p ≤ cϵ|t|.
From the definition (5.12) of Lj(t), it follows that there exist J ′ ∈ N, δ′ > 0
and a constant c′ > 0 such that

(5.18) ∀j ≥ J ′, ∀|t| < δ′, ∥Lj(t)∥p ≤ c′ϵ|t|.

Conclusion. Fix an integer j0 ≥ max {J0, J ′}. According to (5.9), there
exists δ′′ > 0 such that

∀|t| < δ′′, ∥φ(n−1)
j0

(t)− φ
(n−1)
j0

(0)− tφ
(n)
j0

(0)∥p ≤ ϵ|t|.
According to (5.13) and (5.18), we deduce from the equality (5.11) that, for
every t ∈ I such that |t| < min {δ′, δ′′},

∥φ(n−1)(t)− φ(n−1)(0)− tT∥p ≤ (c′ + c0 + 1)ϵ|t|.
Hence, we proved that

φ(n−1)(t)− φ(n−1)(0)− tT = o(t),

which shows that φ(n−1) is differentiable at t = 0 with φ(n)(0) = T , and
finishes the proof.

We conclude this paper by proving Lemma 5.5.

Proof of Lemma 5.5. To prove (1), note that by Duhamel’s formula (see,
e.g., [3, Lemma 5.2]), we have

∥eiA(t)V − eiAj(t)V ∥p = ∥eiA(t) − eiAj(t)∥p ≤ ∥A(t)−Aj(t)∥p.
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Recall that A(0) = 0, so we can write A(t) = tA′(0) + o(t) as t → 0, and
hence Aj(t) = tPjA′(0)Pj + Pjo(t)Pj . It follows that

∥A(t)−Aj(t)∥p ≤ |t| ∥A′(0)− PjA′(0)Pj∥p + ∥o(t)− Pjo(t)Pj∥p.
Since A′(0) ∈ Sp(H), for j large enough, we have

∥A′(0)− PjA′(0)Pj∥p ≤ ϵ,

and for |t| small enough, we have

∥o(t)− Pjo(t)Pj∥p ≤ 2∥o(t)∥p ≤ ϵ|t|,
which gives the desired inequality.

The proof of (2) is similar. Indeed, it suffices to write

(5.19) ∥eiA(t)V − V ∥p = ∥eiA(t) − e0∥p ≤ ∥A(t)∥p = |t|
∥∥∥∥A(t)

t

∥∥∥∥
p

≤ C|t|,

where C := 2∥A′(0)∥p, for t small enough. The proof of the second inequality
in (5.5) is identical.

For the rest of the proof, we let g : t 7→ eit. Then we can write

Ũ(t) = [g(A(t))− g(A(0))]V and Ũj(t) = [g(Aj(t))− g(Aj(0))]V Pj .

Since g ∈ C∞(R) with bounded derivatives, by Corollary 4.2, Ũ and Ũj are
n-times differentiable on R and for every 1 ≤ k ≤ n and every t ∈ R,

Ũ (k)(t) =

( k∑
m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
Dl1,...,lm(t)

)
V,(5.20)

Ũj
(k)

(t) =

( k∑
m=1

∑
l1,...,lm≥1

l1+···+lm=k

k!

l1! · · · lm!
Dj

l1,...,lm
(t)

)
V Pj ,(5.21)

where

Dl1,...,lm(t) = [Γ (A(t))m+1
(g[m])](A(l1)(t), . . . ,A(lm)(t)),

Dj
l1,...,lm

(t) = [Γ (Aj(t))
m+1

(g[m])]((Aj)
(l1)(t), . . . , (Aj)

(lm)(t))

= [Γ (Aj(t))
m+1

(g[m])](PjA(l1)(t)Pj , . . . , PjA(lm)(t)Pj).

To complete the proof of (3), note that for every t ∈ R,

PjŨj(t)Pj = Pj(e
iAj(t)V Pj − V Pj)Pj = eiAj(t)V Pj − V Pj = Ũj(t),

which follows from the fact that Pj commute with eiAj(t) and V . Hence,
differentiating this formula k times gives the result.

Next, according to the latter, to prove (4), we only have to estimate

∥Dl1,...,lm(t)V −Dj
l1,...,lm

(t)V Pj∥p
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for all 1 ≤ m ≤ n− 1 and l1, . . . , lm ≥ 1 such that l1 + · · ·+ lm ≤ n− 1. But
it is easy to check that

Dj
l1,...,lm

(t)V Pj = Dj
l1,...,lm

(t)PjV = Dj
l1,...,lm

(t)V,

so that

(5.22) ∥Dl1,...,lm(t)V −Dj
l1,...,lm

(t)V Pj∥p = ∥Dl1,...,lm(t)−Dj
l1,...,lm

(t)∥p.

Denote Tt := [Γ (A(t))m+1
(g[m])] and Tt,j := [Γ (Aj(t))

m+1
(g[m])]. We have

Dl1,...,lm(t)−Dj
l1,...,lm

(t)

=
(
Tt(A(l1)(t), . . . ,A(lm)(t))− Tt(A(l1)(0), . . . ,A(lm)(0))

)
+
(
Tt(A(l1)(0), . . . ,A(lm)(0))− Tt(PjA(l1)(0)Pj , . . . , PjA(lm)(0)Pj)

)
+

(
Tt(PjA(l1)(0)Pj , . . . , PjA(lm)(0)Pj)−Tt,j(PjA(l1)(0)Pj , . . . , PjA(lm)(0)Pj)

)
+

(
Tt,j(PjA(l1)(0)Pj , . . . , PjA(lm)(0)Pj)−Tt,j(PjA(l1)(t)Pj , . . . , PjA(lm)(t)Pj)

)
:= K1(t) +K2,j(t) +K3,j(t) +K4,j(t).

The continuity of A(lk), 1 ≤ k ≤ m, and the uniform boundedness of (Tt)t∈R
give the existence of C1 (depending on f , A and p) and α1 > 0 such that

∀|t| < α1, ∥K1(t)∥p ≤ C1 max
1≤k≤m

∥A(lk)(t)−A(lk)(0)∥p ≤ ϵ.

To estimate K2,j(t), it is enough to notice that since A(lk)(0) ∈ Sp(H),
1 ≤ k ≤ m, we have

PjA(lk)(0)Pj → A(lk)(0),

in Sp as j → ∞, so that

∥K2,j(t)∥ ≤ C1 max
1≤k≤m

∥A(lk)(0)− PjA(lk)(0)Pj∥p ≤ ϵ

for j ≥ J large enough. For the third term, by Corollary 3.7 there exists a
constant C2 (depending on f and p) such that

∥K3,j(t)∥p ≤ C2∥A(t)−Aj(t)∥p∥PjA(l1)(0)Pj∥ · · · ∥PjA(lm)(0)Pj∥p ≤ ϵ

for j large enough and |t| < α2 small enough, according to the proof of (1).
Since K4,j(t) can be estimated like K1(t), this concludes the proof of (4).

Finally, to prove (5), write, for 0 ≤ k ≤ n− 1 and t ̸= 0,

Rk(t) :=
Ũ (k)(t)− Ũ (k)(0)

t
and Rj

k(t) :=
Ũj

(k)
(t)− Ũj

(k)
(0)

t
,

so that

Ũ (k)(t) = Ũ (k)(0) + tRk(t) and Ũj
(k)

(t) = Ũj
(k)

(0) + tRj
k(t).
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Using the same notations as before, it follows from (5.20)–(5.22) that to
estimate

∥Rk(t)−Rj
k(t)∥p,

it suffices to estimate the quantity
1

|t|
∥(Dl1,...,lm(t)−Dl1,...,lm(0))− (Dj

l1,...,lm
(t)−Dj

l1,...,lm
(0))∥p

for all 1 ≤ m ≤ n− 1 and l1, . . . , lm ≥ 1 such that l1 + · · ·+ lm ≤ n− 1. To
do so, let us write, with the notations Tt and Tt,j introduced above,

(Dl1,...,lm(t)−Dl1,...,lm(0))− (Dj
l1,...,lm

(t)−Dj
l1,...,lm

(0))

=
(
(Tt − Tt,j)(PjA(l1)(t)Pj , . . . , PjA(lm)(t)Pj)

)
+

(
(Tt − T0)(A(l1)(t), . . . ,A(lm)(t))− (Tt − T0)(PjA(l1)(t)Pj , . . . , PjA(lm)(t)Pj)

)
+ [T0(PjA(l1)(0)Pj , . . . , PjA(lm)(0)Pj)− T0(PjA(l1)(t)Pj , . . . , PjA(lm)(t)Pj)

+ T0(A(l1)(t), . . . ,A(lm)(t))− T0(A(l1)(0), . . . ,A(lm)(0))].

Denote by Lj
1(t) and Lj

2(t) the quantities on the first two lines in the last
equality, and by Lj

3(t) the quantity on the last two lines.
For Lj

1, by the boundedness of A(lk)(t), 1 ≤ k ≤ m, in a neighborhood of
0 and by Corollary 3.7, there exists D1 > 0 such that

∥Lj
1(t)∥p ≤ D1∥Aj(t)−A(t)∥p ≤ ϵ|t|

for j large enough and |t| small enough, according to item (1).
For the term Lj

2, by Corollary 3.7 and (5.19), there exists of D2 > 0 such
that

∥Tt − T0∥Bm(Sp(H)) ≤ D2∥A(t)∥p ≤ D′
2|t|

for t small enough and for some constant D′
2. Using again the boundedness

of A(lk)(t), 1 ≤ k ≤ m, in a neighborhood of 0, we get the existence of D′′
2

such that

∥Lj
2(t)∥p ≤ D′′

2 |t| max
1≤k≤m

∥A(lk)(t)− PjA(lk)(t)Pj∥p ≤ ϵ|t|,

where the last inequality is obtained by writing

A(lk)(t) = A(lk)(0) + tA(lk+1)(0) + o(t),

and applying the same computations as in item (1).
Finally, let us write, for each 1 ≤ k ≤ m,

A(lk)(t) = A(lk)(0) + t
A(lk)(t)−A(lk)(0)

t
=: A(lk)(0) + tGk(t),

and
PjA(lk)(t)Pj = PjA(lk)(0)Pj + tPjGk(t)Pj .
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We have

∥Gk(t)− PjGk(t)Pj∥p

≤
∥∥∥∥A(lk)(t)−A(lk)(0)

t
−A(lk+1)(0)

∥∥∥∥
p

+ ∥A(lk+1)(0)− PjA(lk+1)(0)Pj∥p

+

∥∥∥∥Pj
A(lk)(t)−A(lk)(0)

t
Pj − PjA(lk+1)(0)Pj

∥∥∥∥
p

≤ 2

∥∥∥∥A(lk)(t)−A(lk)(0)

t
−A(lk+1)(0)

∥∥∥∥
p

+ ∥A(lk+1)(0)− PjA(lk+1)(0)Pj∥p

≤ ϵ

for j large enough and t small enough. Now, following the same computations
as those used to estimate the term S3,j(t) in the proof of Theorem 5.1, we
obtain, taking larger j and smaller |t| if necessary, the estimate

∥Lj
3(t)∥ ≤ ϵ|t|.

In particular, we have proved that there exist J ∈ N and α > 0 such that

∀j ≥ J, ∀|t| < α, ∥Rk(t)−Rj
k(t)∥p ≤ ϵ.

This concludes the proof of the lemma.
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