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Functions of unitaries with SP-perturbations for
non-continuously differentiable functions

by

CLEMENT COINE

Abstract. Consider a function f: T — C, n-times differentiable on T and such that
its nth derivative f(™ is bounded but not necessarily continuous. Let U : R — U(H)
be a function taking values in the set of unitary operators on some separable Hilbert
space H. Let 1 < p < oo and let SP(H) be the Schatten class of order p on H. If
U:R >t Ut)— U(0) is n-times SP-differentiable on R, we show that the operator-
valued function ¢ : R 3 ¢t — f(U(t)) — f(U(0)) € SP(H) is n-times differentiable on R as
well. This theorem is optimal and extends several results related to the differentiability
of functions of unitaries. The derivatives of ¢ are given in terms of multiple operator
integrals, and a formula and SP-estimates for the Taylor remainders of ¢ are provided.

1. Introduction. Let #H be a separable complex Hilbert space. Let B(H)
denote the Banach space of bounded operators on H, and let U(H) be the
subset of unitary operators. For any 1 < p < oo, SP(H) will denote the
Schatten class of order p on H, that is, the Banach space defined by

SP(H) = {A € B(H) | |Allp := Tr(|A]P)"/? < oc}.
The study of differentiability of operator functions was initiated in [11]. Since
then, it has attracted a lot of attention and significant refinements have been
obtained in [1}, 3, 4, 6, |7, 12, (15417, {19} |20, 24 28|. This study has often
been motivated by problems in perturbation theory. For instance, various
fruitful efforts to prove the existence of spectral shift functions |18 21} 22} 26|
naturally led to the question of the existence and the representation of the
derivatives of
PR3t f(eU) - f(U),

where A = A* € B(H), U €e U(H) and f: T — C is a function defined on T,
the unit circle of C. In [24], the authors proved that if f belongs to the Besov
class BZ,(T), n > 2, the nth order derivative of ¢ exists in the operator
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2 C. Coine

norm. For the Schatten classes, it was proved in [5] that if 1 < p < o0
and A € SP(H), then, under the assumption f € C™(T), the function ¢ is
n-times continuously SP-differentiable on R. In fact, stronger results hold
[5, Theorem 3.3]. The common denominator in all these results is the use of
the theory of multiple operator integrals, which can be seen as the measurable
counterparts of Schur multipliers. In particular, the derivatives of ¢ can be
expressed as multiple operator integrals or a linear combination of them,
with respect to the divided differences of f. See for instance |25, Theorem 3.7]
for the finite-dimensional case and |27, Theorem 5.3.4] or [5, Theorem 3.5]
for the infinite-dimensional case.

In the selfadjoint case, more is known. The analogous question is to in-
vestigate under which assumptions on g : R — C, the function

PR3t g(A+tK) —g(A)

is differentiable, where A and K are selfadjoint with K bounded. When
g € C™(R) with bounded derivatives and K € SP with 1 < p < oo, it is
known that ¢ is SP-differentiable with continuous derivatives |7, 17]. In fact,
the existence of v’ in the SP-norm holds when the assumptions on g are
relaxed. Indeed, one of the striking results is given in |15], where the authors
proved that the condition “g differentiable on R with bounded derivative”
ensures the differentiability of ¢ in the SP-norm. This is a fundamental dif-
ference from the B(H) case, since it is known that the stronger condition
“g € CY(R) with bounded derivative” is not sufficient for the existence of v
in the operator norm [13|. A generalization of the aforementioned result for
the higher order differentiability of ¢ has been established in [6], where it was
shown that if g is n-times differentiable with bounded derivatives ¢, ..., g™,
then so is . It appears that the corresponding result for functions of uni-
taries was not known, even in the case n = 1 and in the Hilbert—Schmidt
case S?(H). Namely, if we drop the assumption of continuity of the derivative
of f: T — C, do we have the differentiability of ¢ in S?(H) or even in SP(H)?

In this paper, we solve this last question in two ways: first by requiring
the minimal assumptions on f, and secondly by obtaining the nth order
differentiability for the associated operator function. We prove (see Theo-
rem that if 1 < p < oo, f is an n-times differentiable function on
T with a bounded nth derivative f(™ and U : R — U(H) is such that
U:R >t~ Ut)—U®0) € SP(H) is n-times differentiable, then the
operator-valued function

p:Rot— f(UH) - fU()) € S"(H)

is n-times differentiable on R. Moreover, if U has bounded derivatives, then
so does . We show that the explicit formulas for the derivatives of ¢ given
as a sum of multiple operator integrals, obtained with stronger assumptions
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in |5, |25, [27], also hold true at the degree of generality aimed at in this
paper. Note that this result is optimal: it is clear that if ¢ is differentiable
for every differentiable function U, then f itself must be differentiable. In
particular, this paper settles the question of SP-differentiability for func-
tions of unitaries. Additionally, we explain in Remark how to obtain a
representation of the Taylor remainder
n—1
R (1) == FU@M) = FU©O) = 3
m

=1

%w(m)(o),
as well as an estimate of its SP-norm in the case U(t) = *AU.

To achieve our results, we first have to establish important properties of
multiple operator integrals, such as their boundedness on Schatten classes
when they are associated to divided differences, and some of their properties
that will be suitable to study the differentiability of operator functions. Some
of the properties are similar to those in [5]|; however, in this more general
setting, the proofs will require more care. In particular, our approach uses
the construction of multiple operator integrals as defined in [8], which is ap-
propriate for our study as it is very general. Next, we will show that with the
help of a Cayley transform, we can use the selfadjoint analogue of our main
result, proved in [6], to obtain our result in a particular case. This step is cru-
cial and this is where the biggest differences appear between the case when f
only has a bounded nth derivative, and the case when f has more regularity
such as f € C™(T). In the latter case, one can approximate f and its deriva-
tives uniformly (which yields stronger results), while when the assumptions
are relaxed, the approach of [6, 15| rests on the approximation of the opera-
tors appearing in the SP-perturbation. Finally, the main result, Theorem [5.1
will follow from a careful approximation of the path of unitaries.

The paper is organized as follows: In Section [2| we give the definition of
the divided differences of a function f and show that they can be approx-
imated by more regular functions in Lemmas [2.1] and [2.2] In Section [3| we
recall the definition of multiple operator integrals and establish some of their
properties such as SP-boundedness in Theorem and an important pertur-
bation formula in Proposition [3.5 In Section[d] we generalize the main result
of |6] to be able to apply it in Proposition which is a weaker version of
our main result. Finally, Section [f]is dedicated to the proof of Theorem [5.1}
The proof will require two auxiliary results, Proposition [5.4 and Lemma[5.5]
which are the first steps towards an approximation argument used in the
proof of our main result.

Notations and conventions

e Whenever Z is a set and W C Z a subset, we let xw : Z — {0,1}
denote the characteristic function of W.
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e As recalled at the beginning of the introduction, SP(H) will denote the
p-Schatten class on a complex separable Hilbert space H, and Sk (H) will
be the subset of selfadjoint operators in SP(#H). The SP-norm of an element
K € SP(H) is denoted by || K]|p.

e Similarly, B(H) is the Banach space of bounded linear operators A :
H — H equipped with the operator norm, denoted by ||A||. We let Bg,(H)
denote the subset of bounded selfadjoint operators on H.

e Let f: T — C be a function. The derivative of f at zg € T is the limit

(1.1) f'(20) == lim M,

2€T, z—20 Z — 20

provided it exists.
o If p: R — SP(H) is an SP(H)-valued function, we will say that ¢ is
differentiable at s € R if the limit

exists in SP(H). In that case, ¢/(s) € SP(H).
o If T € B(#H), we let o(T") denote the spectrum of 7. In particular, if
T € U(H), then o(T) C T.

e For any k € N, we will use the notation (T)* =T,...,T.
———
k

e Let n € N and let X1,...,X,,Y be Banach spaces. We denote by
B, (X1 x---xX,,Y) the space of bounded n-linear operators T': X1 x---x X,
— Y, equipped with the norm

1T B, (x1 % x X0 v) == sup [ T(z1,...,za)]l.
llzil|<1,1<i<n
We will sometimes write ||| for the norm of 7" when no confusion can occur.
In the case when X; = --- = X,, = Y, we will simply denote this space
by B, (Y). Finally, note that B, (S?(#)) is a dual space; see |8, Section 3.1]
for details.

2. Divided differences and approximation. In this section, we first
recall the definition of the divided differences of a function f and their prop-
erties. Then, we will give the construction of two sequences of elements of
C™(T) which approximate, in a certain sense, the divided differences of a
function f with bounded nth derivative. Both constructions have advantages
and disadvantages, as explained before each statement.

Let f: T — C be a function defined on T. We define its divided difference
fl7l . Tt 5 C recursively as follows. First, by convention fI% = f. Next,
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if f is differentiable, flIl : T2 — C is defined by

SO1)— f(>\2) if A A
M ag) =] = LA e
f’()\l) if A = Ag,
Now, let n € N and assume that f is n-times differentiable on T. The nth
divided difference fI* : T"*1 — C is defined by

FPUO A8, A1) =P (A28, 0 41) i Ay £\
f[n](Al,)\Q,...,AnH):: A=Az if Ay # A2,
61f[”‘1]()\1,)\3,...,/\n+1) if A1 =MAo,
for all A\1,...,A\p+1 € T, where 9; stands for the partial derivative with
respect to the first variable.
The function f[" is symmetric in the n + 1 variables (A1,..., A\yp1), it

is measurable, and f[ is bounded if and only if £ is bounded. Indeed, it
follows from |10, Theorem 2.1] that there exists a constant d,, such that

(2.1) 1 oo (rnt1y < il £ poomy

In [10], the estimate for [fI (A1, ..., Aps1)| was obtained for distinct \;, but
when f is n-times differentiable, the same inequality readily extends to every
point of T"+1.

In the following, we give the first construction of a sequence (f;); which
will approximate the derivatives of f and its divided differences. This con-
struction will allow us to obtain a satisfactory bound for the nth divided
difference of f;, which in turn will allow us to get a certain bound in Theo-

rem

LEMMA 2.1. Letn € N and let f : T — C be an n-times differentiable
function such that f™ is bounded. Then there exists a sequence (fj)j of
trigonometric polynomials on T such that:

(1) For every 1 < k < n —1, the sequence (fj[k})j, is uniformly convergent
to fIk on Tk,

(2) The sequence (fj[n])] is pointwise convergent to f") on the set

']I‘n+1\{(/\1,...,)\n+1) | A== Ans1}-
(3) For every j,

15 zoensny < dall £ oo cry < dallF )l oe
where d,, is the constant of (2.1] -
Proof. For every j € N, define f; := f x F; where Fj is the Fejér kernel,
that is,

2 2

Va=e? €T, fi(z)= | fFe)F;(0—1) gfr | £ Fy(t) 5=
0 0

dt
o’
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For every j, f; is a trigonometric polynomial. Moreover, since f (") is bounded,
it is well-known that f; is n-times differentiable on T and for every 1 < k < n,

2w
. o dt
ve=el e, V()= | rOEOD)ME () T (70« By (e),
0
where Fj ;. (t) = e"*!F}(t). In particular, according to (2-1) and by Young’s
inequality, we have, for every 1 < k < n,
k k
1A iy < il £l ooy < il F O oo oy 1Bkl
= die | F ) oo (1 1 £ oy
= digl| f P oo (-

Next, it is a classical fact that for every 1 <k <n —1,

f;k) — F*) uniformly on T.
J]—00

By ([2.1)), this yields
k k
1P — ) poe iy = 10 = £) P oo sy < diell F® = £ ooy —— 0.

J—00

Now, let (A1,...,Apt1) € T be outside the diagonal of T"*!. Let 1 < i
< n be such that \; # A\;11. It follows from the symmetry of f][n] that

O )

AT A A ) = AT Ow A At Ang)
B Ai — Nit1 .

Hence, the pointwise convergence of ( fj[n_l])j to f"=11 implies the conver-

gence of (f"(Ar,... Aur1)); t0 ST (AL -, Anst). m

The next lemma gives the construction of another sequence of functions
(fj); whose advantage is that ( f]["])j is pointwise convergent to fl" every-

where. However, it is not clear that we can estimate the derivatives f;n)
as efficiently as in Lemma For that reason, and even if we can have a
better estimate, we will only prove that the derivatives are bounded, which
is enough for our purpose. This result will be useful in Section [} as it will
allow us to circumvent certain combinatorial and computational difficulties;
see Proposition [1.4]

LEMMA 2.2. Letn € N and let f : T — C be an n-times differentiable
function such that f is bounded. Then there exists a sequence (fj); C
C™(T) such that:
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(1) For every 1 <k <mn—1, the sequence (f][k])j is uniformly convergent to
f[lc} on Tk

(2) The sequence (f][n])j is pointwise convergent to fI*l on Tk,

(3) There exists a constant M > 0 such that, for every 1 < k <n and every

JeN,

k
Hf; )||L<>o(1r) < M.

Proof. For a function g : T — C, we let g : R — C be the 27-periodic
function defined for every t € R by g(t) = g(e®). Then g is n-times differ-
entiable on T if and only if g is n-times differentiable on R. Moreover, by
induction (or using Faa di Bruno’s formula), we can prove that for every
1 <k < n, there exist constants a1 k,...,axk, b1 k,...,brx € Cindependent
of g (which we do not need to make explicit) such that, for every e € T,

k
(22) G0 =3 apre?g? () and g®(™) Z’“prkg

ForanijN,deﬁnefj:R%(be
t
VteR,  fj(t ZJS (u+1/7) = f(u)) du+ F(0).

Then fj is 2m-periodic, fj € C™(R) and for every 1 < k < n and every t € R,

#(k
(2.3) IP W =3(FE D+ 1/5) - 750 ).
It is then easy to check that for every 1 <k <n—1,

(2.4) f](k) —— f®  uniformly on R
j—00

and

(2.5) fj( ", F™  pointwise on R.
j—00

Moreover, for every 1 < k < n,
(2:6) vieR, |00 < 17V~ m).

Let us show that the sequence (f;);, where f;(et) = f;(t), satisfies con-
ditions (1)—(3). First, f; is n-times differentiable on T, and according to ([2.2)
we have, for every 1 < k < n,

f(k zt —zk:t Z bp, f P)

It follows that f](k) is continuous on T so that f; € C™(T). Moreover, for
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1<k <n-—1and by (2.4), (f](k))] is uniformly convergent to the function
k
5 — ity okt Z bp,kf(p) (t) = f(k) (eit)’
p=1

and similarly, by (2.4) and ([2.5)),

(2.7) £ —— f®  pointwise on T.

j—00
Hence, according to (2.1]), we find that for 1 <k <n —1,

1A — £ oo sy = 10 = £3) B oo panny < dillF® = 11| ooy —— 0,

J—00

which gives (1). As in the proof of Lemma it also follows that ( fj[n]) jis
pointwise convergent to fI™ outside the diagonal of TF*!, and if (X,...,\)

€ T"*! we have, by (2.7),

[n] _ L. L otm)yy _ ¢ln
O A = ) o ) = O,

which proves that (f;); satisfies (2).
Finally, by (2.6)), the sequences ( f](k)) j» 1 <k < n, are uniformly bounded

on R, and by (22.2), this implies that the sequences (fj(k))j, 1 < k < n, are uni-
formly bounded on T. This yields (3) and finishes the proof of the lemma. =

3. Multiple operator integrals. In this section, we first recall the def-
inition of multiple operator integrals as constructed in [8, Section 3|. Other
approaches to operator integration require a certain regularity of the sym-
bol, while this construction is more general and thus fits in with this paper’s
scope. For other approaches, we refer to [27], as well as the references therein.
Next, we extend the result on the SP-boundedness of such mappings when
the symbol is a divided difference fI"! for a (non-continuously) n-times dif-
ferentiable function f with bounded nth derivative. Finally, we prove an
important perturbation formula and give some of its consequences, which
are key for our analysis.

3.1. Definition and background. Let A be a normal operator on H.
In this paper, A will be a unitary operator most of the time, but we will
also need the case of selfadjoint operators in Section Denote by E4
the corresponding spectral measure. For any bounded Borel function f :
0(A) — C, one defines an element f(A) € B(H) by setting

FA) = | f)dEA).

o(A)
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According to |9, Section 15|, there exists a finite positive measure A4 on
the Borel subsets of o(A) such that E4 and A4 have the same sets of mea-
sure zero. If f : 0(A) — C is bounded, then by [9, Theorem 15.10], the
operator f(A) only depends on the class of f in L®°(A4) and it induces a
w*-continuous *-representation

L>®(A\a) > f— f(A) € B(H).

The measure A4 is called the scalar-valued spectral measure for A.
Let n € N, and let Aq,... ,An+1 be normal operators on H with scalar-
valued spectral measures Ag,,...,A4,,, Let

I L®0a,) ®--®@ L®(\a,.,) — Ba(S2(H))

be the linear map such that for any f; € L*(\4,), 1 < i < n+1, and for
any Kq,..., K, € S*(H),

[F(fi @ ® far)|(Ky,. .., Kn)
= f[i(A) K1 f2(A2) K2 -+ fr(An) Kn fri1(Angr).

The space L>®(Xq,) ® -+ ® L>®(X\4,,,) is w*-dense in LOO(H"+1 A4,), and
according to [8, Proposition 3.4 and Corollary 3.9, I' extends to a unique

w*-continuous isometry denoted by
n+1

FA17“'7A’VL+1 LOO(H )‘Az) N Bn(SQ(rH))
=1

As recalled in the introduction, B, (S%(H)) is a dual space, and the w*-conti-
nuity of "1 »4n+1 means that if a net (;);cr in LOO(H"+1 A4,;) converges
to ¢ € L®([T/ \a,) in the w*-topology, then for any K, ..., K, € S*(H),
the net
([FAI’W’AM—I (SOi)](KL s 7Kn))i61
converges to [[At-An+1(0))(K7, ..., K,) weakly in S?(H).
DEFINITION 3.1. For ¢ € L®([T"H! \4,), the transformation
FAl,...,An_H (SO)

is called the multiple operator integral associated to Ay, ..., Apy1 and . The
element ¢ is sometimes referred to as the symbol of the multiple operator
integral.

To conclude this subsection, note that one can define
rAn-Anii() : S2(H) x - x S*(H) = S*(H)

for any bounded Borel function ¢ : & — C such that []"! o(4;) € U by

setting
FAlv---vAnﬁ*l(SO) — FAL---,AnH(@’
where ¢ is the class of the restriction ¢|;(4,)x..xo(A

in Z2(TT Aa,)-

n+1)
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3.2. SP-boundedness and perturbation estimate. Let 1 < p < o0,
n € N, and let Uy,...,Uyq1 be unitaries on H. In this subsection, we
first establish that for every n-times differentiable function f on T with
bounded nth derivative, for the symbol ¢ = f[™, we have I'Utr»Unt1( flnl
€ B, (SP(H)).

More precisely, and more generally, we will show the following. If
1 <p,pj <oo,j=1,...,n are such that 1/p = 1/p1 +--- 4+ 1/p, and
S?(H) N SPi(H) is equipped with the || - ||,-norm, the n-linear mapping

pULUnn () - (S2(H) N SPHH)) x -+ x (S2(H) N SP*(H)) — SP(H)
is bounded. In particular, by density, it uniquely extends to an element
PUUnsr (flly € B (SPL(H) x -+ x SP*(H), SP(H)).

This result has been established for n = 1 and a Lipschitz function f on
T in [2, Theorem 2|, and in [5, Theorem 2.3] for general n € N and f with
continuous nth derivative f(™. The selfadjoint counterpart of this result, that
is, for an n-times differentable function g : R — C with bounded derivatives
¢, ...,9"™ has been proved in [6, Theorem 2.7]. We will need this fact in
Section [4] when considering functions of selfadjoint operators.

Let us start with the following lemma which is the unitary analogue of
[6, Lemma 2.3]. It will be used throughout this paper. Note that it holds
true even for normal operators, with the same proof.

LEMMA 3.2. Letn € N and let p1,...,pn,p € (1,00) be such that 1/p =
1/pr+---+1/pn. Let Uy, ..., Uyyq1 be unitary operators on H. Let (ok)r>1,
@ € L[] \v,) and assume that (@) is w*-convergent to @ and that
there exists C' > 0 such that, for every k > 1,

||FU1’“"UH1(@k)HBn(SPl ..xsen spy < C.
Then I'YtUnti(p) € B, (SP* x --- x SPr, SP) and

HFUI""7Un+1(‘P)HBH(SIH x.xsen sp) < C.
Moreover, for any X; € SPi(H),1 <i <n,

[P (@) (K, X) S (PP () (K, Xo)

weakly in SP(H).

The following states that [5, Theorem 2.3 remains true when we drop
the assumption of continuity of f(™. It is crucial because it ensures that all
the operators that will appear in the rest of the paper belong to SP(H).

THEOREM 3.3. Let n € N and let f : T — C be n-times differentiable
such that f is bounded. Let 1 < p,p; < 00, j = 1,...,n, be such that
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1/p=1/p1+---+1/pn. Let Uy,...,Ups1 be unitary operators on H. Then
pUUnr(flly € B (SPY (M) x -+ x SP*(H), SP(H))
and there exists Cp, > 0 depending only on n,p1,...,p, such that

(3.1) [TV Unir (FD)]| 5 (5o 30y xson (30), 80 (20)) < ConlLF™ | oo () -
In particular, TVv-Unt1(fI7)) € B, (SP(H)), with

(3.2) PO (1)) 5 0y < Cpnll £ | oo (-

To prove this theorem, we will need the following lemma. It is certainly
well-known to specialists but we include a proof for the convenience of the
reader.

LEMMA 3.4. Letn € N and let f : T — C be n-times differentiable
such that f(”) is bounded. Let 1 < p,p; < oo, j = 1,...,n, be such that
1/p=1/pr+ -+ 1/pn. Let Uy,...,Uyy1 be unitary operators on H. Let
A:={(A1,...; s1) | A1 =+ = Aas1} be the diagonal of T"1. Then

POt () € B(SP () x -+ x 7 (), S"(H)
and )
Ui,...,.Upn n n
(e 1 (flxa)| < m”f( )HLOO(T)-
Proof. Let (gr)r be a sequence of continuous functions converging point-
wise to (™ on T and such that for every k, gkl oo (1) < ”f(n)HLoo(T) (take

e.g. gp(z)= k(f(n_l)(zei/;)ff(n_l)(Z))). Let gi be defined, for any (A1, ..., Apy1)
in T+, by

- 1
G M, Ang1) = ﬁgk()\l)XA()\la ey Angl)-
Note that

1
(X a) Aty Angn) = mf(n)()‘l)XA(/\lv s Ang).

Hence, by Lebesgue’s dominated convergence theorem, (gi)r w*-converges
to flMlxain L®(\y, x - - x AU, )- In particular, to prove the lemma, it suf-
fices, according to Lemma to prove that I'Vi-Unt1(g) € B, (SPH(H) x

- x SPr(H),SP(H)) with norm less than || f™ || zoo (). To simplify the
notations, set h := %gr and h := gr for some fixed r € N.

Let m € N. Let Ay := {e¥™ | k/2™ < t < (k+1)/2™} and define
Pﬂr‘z,k := EYi (A k). Then Zizo_l P’riz,k = Iy for every 1 < j <n+1. Let
2<qg<mnandlet K € SP1(H). Define

2m_1 2m_1
Un(t) = Z (ziktlf’gu€ and V,,(t) = Z e*iktPg;r,:.
k=0 k=0
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For every t € R, U, (t) and V,,,(¢) are unitaries on H and we have

2m—1

Un(t) KV (t) = > e/t ipd K PItY
k,l=0
so that
L2 2m—1 X
° \ Un()KVin(t)dt = > PL KP,
0 k=0
which in turn yields
2m_1 B4
1
33) | X pkP| <o VIO EV Ol dt = K]y,
k=0 e 0
For ¢ = 1, one defines
Un(t) := Z h(eka/Qm)e’ktPg%k and Vi, (t) = Z e_Zktmek.
k=0 k=0

Then ||Upn(t)]] < |A]| oo (1) and proceeding as above, we get

2m—1
CON DN TEn e
k=0

1 n
< [Pl oo my 1K Iy < ml!f( M zoe(my 1K llpr -

Next, let B, 1, = H?:”Lll Ay, 1 be the Cartesian product of n+-1 copies of A, 1.
Define

2m—1
om = Y W™ )xp,,,.
k=0

For every 1 < i < n, let K; € SPi(H). We have, by definition of multiple
operator integrals and by orthogonality,

[FUl’m’UnH (QOm)](Kl? LR Kn)

2m—1
= D WP KA F e Pl K P
k=0
2m—1
_ (Z h(e2imk/2™) Pﬁl’kKlPﬁ%lJ
k=0

am_1 am_1
: ( > sz,kK2Pri,k) ( > Pnri,kKnPrm;l)-
k=0 k=0
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It follows from (3.3]) and (3.4)) that
1 n
70U (o) (K, - Kl < m\lf( Moo 1K1 py - [ 5nllp, -

Next, we show that ¢, —— h pointwise on T"*1. First, let (Ao A)
m—00

€ T"*! be on the diagonal of T"*!. Write A = 2™ where 0 < t < 1, and

for every m € N let k,, be the unique integer such that 0 < k,, < 2™ — 1

and A € Ay, k,,. Then, for every m, we have ’;—% <t< kg@;f L which implies

that lim,,— o g—z = t. In particular, by continuity of h,

Em(A, ..., A) = h(e¥mrm/2™y — h(e2™) = h(X) = h(X,..., \).
If (A1,..., A \ng1) € A, then, for every m large enough and for every 0 < k <
2 —1, (M1, ..., Any1) € En g, so that

(pm(Al, ey )\n-l-l) =0= h(Al, ey /\n+1)-

To conclude the proof, notice that ||¢m || geernt1y < HilHLoo(Tn—'rl), hence,
by Lebesgue’s dominated convergence theorem, (¢g,)m w*-converges to h =

gr in LAy, X -+ X Ay, ). Using Lemma [3.2] we get
. 1
0t (G € O oo,
and the conclusion of the lemma follows. =
We now turn to the proof of Theorem [3:3]
Proof of Theorem[3.3 Let A :={(A1,...,Anq1) | A1 =+ = A\pp1}. By
Lemma [3:4]
FUly-wUn-‘rl(f[n}XA) € B (SPH(H) x - x 8P (H), SP(H))
with norm at most %H Jasdl reo(m)- Hence, it suffices to show the bound-
edness of I'UtUnti(fInl(1 — y4)). Let (f;); be the sequence of trigono-
metric polynomials given by Lemma Let T; := [YrUntr( f][n}) and
Tj = FUlv-"vU"H(fJ[n]XA). According to |5, Theorem 2.3] and Lemma
Tj, Tj € Ba(SP' (M) x - x S (M), S (H)),
and there exists a constant ¢, , > 0 such that
1751 < epmll £ llzery < epmllF™llnoe .
~ 1 1
1751 < =15 ey < I oo ry-
Notice that 1 — xa = xp where 2 := T\ A so that, according to
Lemma f][n](l — xa) is pointwise convergent to fI"/(1 — ) and

1A = xa) lpoe oty < ST ooty < dall £ oo ry.
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Hence, (fj[n](l —xa)); w*-converges to f"M(1—ya) in LAy, x - - x AUpi1)-
Since
n . 1\,
U (70 = aDl = 1T = Bl < (e + 2 ) ecey
it follows from Lemmathat DU Unia (FI01(1 =y p)) € Bp(SPH(H) x - - -
x SPr(H),SP(H)) and

1
P0G (790 = aD] < (e + 2 17y
This concludes the proof of the theorem. =
The next proposition is a crucial perturbation formula. It is key whenever
the differentiability of operator functions with SP-perturbation is studied. In

the unitary setting, it generalizes |5, Proposition 3.5 where the result was
proved for f € C™(T).

PROPOSITION 3.5. Let 1 < p < oo and n € Nxg. Let Uy,...,Uy—1,
UV € UH) be such that U —V € SP(H). Let f : T — C be n-times
differentiable on T such that f(”) is bounded. Then, for oll Ky,...,K,_1 €
SP(H) and for any 1 < i < n we have

[FUl,...,Ui_l,U,Ui,...,Un,l (f[n—l]) _FUl7~~~,Ui—1,V,U¢,~~-,Un—1 (f[n—l])](Kl’ o 7KTL—].)
= [PV Vit UV Ui Unma (0D (K K, U = VK, K1),

Proof. Fix 1 <i <n and let (f;); € C™(T) be given by Lemma[2.2] By
[5, Proposition 2.5], we have

(3.5)

[FUl,‘..,Ui_l,U,Ui,..‘,Un,1 (fj[nfl]) . FUI7~~~,Ui—1’V7U’L)~~~,Un*1 (fj[nfl])] (Kla . ’Knil)

_ [FUl7.--7Ui71»vainw..,Un—l (f][n])](Klv LKW U=V K, ... ;Kn—l)-

The sequence (f (n_l))j is uniformly convergent to f(»~1 on T. It follows
from Theorem that
FUl,...,Ui,l,U,Ui,...,Un_l(f][n—l]) ]—>—oo> FUI,..,,Ui,l,U,Ui,...,Un_l(f[nq])’
FUI,...,UH,V,Ui,...,Un_l(f][n—l]) ]—>—oo> FUl,..,,Ui,l,V,Ui,...,Un_l(f[nfl])
in B,,(SP(H)). In particular, they converge pointwise, that is,
[PV Uit .Ul Unt (f][n_l]) U Ui VUi Un (f][”_l])](Kl, oo Kpo1)
Py

[FUl ..... Ui—1,U,Us,...Un—1 (f[n—l]) _Us5Uim1, VUi, Un—1 (f[n_l])](Kl, oo K1)
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in SP(H). Next, by Lemma and Lebesgue’s dominated convergence the-
orem, the sequence (f][-n])j w*-converges to fI" in Ly, x --- x Ay,_, X
AU X Ay X Ay, X -+ X Ay, ). It follows from Lemma that

[FUly---in—l7U,‘/7Ui7-..7Un71(f][n})](Kl’ K, U=V, K, ..., anl)
converges weakly (in SP(H)) to
[PV Vit UV Unma (f0D () K0, U =V Ky Ko).

Hence, taking the limit as j — oo in (3.5 in the weak topology of SP(H)
yields the desired identity. m

COROLLARY 3.6. Let 1 < p < oo and let n € N>o. Let U,V € U(H) be
such that U —V € SP(H). Let f : T — C be n-times differentiable on T such
that £ is bounded. Then, for all K1,...,Kp_1 € SP(H),

@ (fln=1y - PO (= I(K, L Ky)

=N I (KL K, U = VK K ).
Proof. 1t suffices to write
[F(U)n(f[”_”) - (V)n(f["_”)](f(h o Kna)

—Z (PO (pltly _ pO O gty g K, )

and then apply Proposition [3.5] =

COROLLARY 3.7. Let 1 < p < oo and let n € N>g. Let Uy,...,U,,
Vi,..., Vo, € U(H) be such that U; — V; € SP(H) for every 1 < i < n. Let
f: T — C be n-times differentiable on T such that f™ is bounded. Then
there exists Dy, > 0 such that

[PV Un (fln=ty — PV Vo (U] soany)
< me”f(n)”Lw(T) lrg]?é’(n Uk — Vk”p‘

Proof. Let Ky,...,K,_1 € SP(H). By Proposition , we have
[FUl,...,Un (f[nfl]) . ]ﬂu‘/'l,...,\/'n(f[nfl})](lfl7 s Kn—l)

I
NE

[FUl,..,,Uk,Vk+1,...,Vn (f[n—l]) - FU17...,Uk_1,Vk,...,Vn (f[n—l})](Kh o 7Kn—1)

e
Il
—_

I
NE

[PV Unb VotV (P (K Ky, Uy = Vi, Ky o, Ko,

i
I
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By Theorem 3.3} there exists a constant C, , such that

POty — PV (F ) K

sn lrgl?<xn H[FUl’m’Unik’V“ik,wvn(f[n])](Klv oy K1, U = Vi, K, - Kn—l)”p

< Gl ey s U= Vil 1Kl = [[F

This concludes the proof of the corollary. m

REMARK 3.8. Proposition [3.5 and Corollary [3.7] also hold true for n = 1.
For the perturbation formula, this means that if U,V € U(H) are such that
U—-V eSP(H) and f: T — C is differentiable with bounded f’, then

fFU) = f(v) =V (Mw -v).

We refer e.g. to [4]. Alternatively, for a more recent reference, we can first
use [5, Proposition 2.5] for f € C*(T) (the proof works verbatim for n = 1),
and then some minor modifications to the proof of Proposition [3.5| will give
the desired formula. The bound given in Corollary [3.7] for n = 1 simply
corresponds to [2, Theorem 2].

4. From selfadjoint to unitary operators. In this section, we will
prove a general result on the differentiability of operator functions in the self-
adjoint case and then deduce its unitary counterpart using a Cayley trans-
form. This will be the first step towards our main theorem in Section

Let A: R — B (H) be such that R 3 ¢t — A(t) — A(0) € SEL(H) is
n-times differentiable, and let f be an n-times differentiable function on R.
We will show that the function

PR3t f(A®)) — f(A0) € SP(H)

is n-times differentiable as well. The particular case A(t) = A + tK, where
A € Bsa(H) and K € SE(H), is the main result of [6]. We will outline the
minor changes to make in the proof of |6, Theorem 3.1| as well as in the
results therein to obtain our general result in Corollary

Let us start with the following, which is the key step prior to a combina-
torial reasoning.

THEOREM 4.1. Let 1 < p < oo, and let A : R — B (H) be such that
AR>St At) — A(0) € SB.(H) is differentiable in a neighborhood I of 0.
Let n € N>o. For every 1 <i<n—1, let S;: R — SL(H) be differentiable
on R. Let f be n-times differentiable on R such that f™ is bounded and
consider the function

YRSt [PAO"(FP=IN(81(8), ..., Suei(t)) € SP(H).
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Then 1 is differentiable on I and for every t € I,

n—1
W) =Y [PAO (£ (S (1), . Skor (), Sk(E), Sk (8), -+ - Snoa(2))
k=1
+ . (DA NSy (4), ..., Sho1(8), A'(2), Sk(t), ..., Su_1(2)).
k=1

Proof. Let us explain the simple modifications to make in [6] to obtain
the result. Throughout the proof, we denote A := A(0) € Bga(H). Define,
for K7 le s 7Xn—1 € Sgav

VK Xy Xy P R Dt [PATE" (rn=ty (X, X, ).

is differentiable at 0. Assume that
is differentiable at 0

We first want to prove that ¥k x, . x

»An—1
for every Ky in a dense subset of S, VKo, X1,....X
with

n—1

n

n+1
leo7X1,...,Xn_1(0> = Z [F(A) (f[n])](le ooy Xp—1, Koy X, - -+ Xn—l)'
k=1
Then, arguing as in the proof of |6, Lemma 3.7|, one shows that for every
K ¢ SE, YK X,,...X,_, is differentiable at ¢ = 0 with the same formula for
its derivative. Next, as explained in [15] or in the proof of |6, Theorem 3.1],
one can choose

F:={i[AY]|+Z|Y,Z €S, (H) and Z commutes with A}

as a dense subset of SL,(#). Then we can assume that K =i[A4,Y]+Z € F
and we have to show that ¥k x, . x,_, is differentiable at ¢ = 0. The first
part of the proof of |6, Theorem 3.1] applies and it tells us that ¥k x, . x, ,
has a derivative at 0 if and only if

ERo>t—
n

ST AT () (X, Xk K Xkt Xoet)
k=1

has a limit at 0 (in SP), and in that case, this limit is ¥% v, (0).
But notice that by continuity of multiple operator integrals (the operators
rAH2)" LA (flnly are uniformly bounded with respect to ¢t € R), it is
enough to show that this limit exists when Xi,..., X,,_1 are elements of the
dense subset F. Hence, one can write X; = i[A,Y;] + Z;. The rest of the
proof is similar, with obvious modifications, and shows that £ has indeed a
limit at 0 equal to
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(41)  Yix,.x,,(0)

n
=W X Xk K X - X)),
k=1
as expected.
Now, let us come back to the function . It is sufficient to prove the
formula for t = 0. Let K := A’(0). By a straightforward modification of
|6, Lemma 3.8], ¢ is differentiable at 0 if and only if

RSt [PAFE" (f=IN(51 (1), ..., Suoi (b)) € SP(H)
is differentiable at 0, and in that case ¢/(0) = ¢/(0). Let us write, for every
1<i1<n—-1,
Si(t) = 8i(0) + tSj(0) + 0i(t)
where 0;(t) =o(t) depends on 4. By uniform boundedness of I'(A+E)"(flr=1)

for t € R, and by the multilinearity of operator integrals, we can write

i(t)=[ AR (I =ID])(S1(0), -+ Sn-1(0))

Z LA (f1H](S1(0), .., Si1(0), S4(0), Sr1(0), . - Su1(0))

+ o(t:).

By the first part of the proof, ¢ is differentiable at 0, and by (4.1), we get
the desired formula. =

COROLLARY 4.2. Let 1 <p < oo and letn € N. Let A: R — Bsa(H) be
such that A : R >t — A(t) — A(0) € S(H) is n-times differentiable in a
neighborhood I of 0. Let f be n-times differentiable on R such that f is
bounded. Then the function

¥Rt fA®R)) - f(A(0) € SP(H)
is n-times differentiable on I and for every integer 1 < k < n and every
tel,

42) W) =
k
S Y e A, A 1),

L.
m=1 l,dm>1 L m

L+ +lm=k
Proof. We prove the result by induction on n. The case n = 1 follows
from |15, Theorem 7.13]. When n > 2, using Theorem and employing
a combinatorial reasoning as in the proof of |27, Theorem 5.3.4] gives the
result. We leave the details to the reader. m
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REMARK 4.3. When f € C"(R), the result of Corollarycan be proved
using [17, Theorem 3.3| instead of Theorem [£.1]

The next proposition corresponds to the main result of this paper (see
Theorem but with an additional assumption on the function ¢ — U(t)
valued in the unitary operators. We will need it to prove the same result in
full generality in Section [f] The proof makes use of Corollary [4.2] which is
the corresponding result for selfadjoint operators. We will need the Cayley
transform to change the function t — f(U(t)) — f(U(0)) into a function
t— g(A(t)) — g(A(0)) where A is valued in the set of selfadjoint operators
on H. Denote by 1 : R — T\ {1} the Cayley transform and by 5~ its inverse
function, defined by

n:R—=T\{1}, 7 ":T\{1} =R,
x4+ 2+1

-, Z 4 .

xr—1 z—1

If A€ Bsa(H), then n(A) € U(H) and o(n(A)) C T\ {1}, and conversely, if
U € U(H) is such that 1 ¢ o(U), then n=1(U) € Bsa(H).

T —

PROPOSITION 4.4. Let1 <p < oo andn € N. Let U : R — U(H) be such
that the function U : R 3t — U(t) — U(0) € SP(H) is n-times differentiable
on R and assume that 1 ¢ o(U(0)). Let f : T — R be n-times differentiable
with bounded nth derivative f). Consider the operator-valued function

et f(UQR) - f(U0)) € SP(H).
Then ¢ is n-times differentiable in a neighborhood I of 0 and for everyt € I,

43)  oM(t)
= Y Z #[F(U(t))m“ (Frhy @ @), ..., T ().

m=1 [, . Im>1

Proof. By continuity of U, U(t) — U(0) as t — 0 in the operator norm,
and since 1 ¢ o(U(0)) and the spectrum is closed, there is an a > 0 and
a real interval I around 0 such that, for every ¢t € I, o(U(t)) C C, where
Co :={z€T||z—1| > a}. Note that all functions of operators and multiple
operator integrals only depend on the values of the associated function on the
spectra of the operators. In particular, one can extend 7! from C, to a C™
function on the whole T if necessary. Let us define, for every ¢t € I, A(t) =
7~ (U(t)) € Bsa(H). Note that for every t € I, A(t) := A(t)—.A(0) € SP(H).
Indeed, this follows either from [2, Theorem 2| or by the straightforward
identity
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A(t) = A(0) = =2i(U(t) = 1)~ (U ) = U(0)(U(0) = I)~,
which yields
IA®) = AO)[lp < 21U #) =DM - U@ = UO)], - [(U©0) = D)7 < oc.

Moreover, A is n-times differentiable on I. This follows either from |5, The-
orem 3.5] or simply by using the fact that ! is a rational function so one
can use standard algebraic identities as above. Let g : R 5 ¢ — f(n(t)) and
note that

p(t) = fn(n™ " (U®)))) = Fn(n~ ' (U(0)))) = g(A(t)) — g(A(0)).

The function g is n-times differentiable and since f and n have bounded
derivatives, g has bounded derivatives as well. By Corollary  is n-times
differentiable on I and for every t € I,

M= Y Y O AW, . A()

It remains to show that for a fixed ¢t € I,

Q=YY e O (O ), LG 1)
m=1 li,.lm>1 e

n

-3 T oo

m=1 I, lm>1

To prove this, let (f;); C C"(T) be the sequence given by Lemma[2.2] Then,
for every j € N, the function
pj b= f;(UR) = f(U(0)) € SP(H)

is n-times differentiable on I and

(4.4)
- m,l @)  (n),,\ ® - myly,..l
317"-7lm P \_/ lyeestm
Y. > DRy =etm=) Y, D).
m=1 I1,.,ln>1 m=1 lq,..,lm>1
L4 AHm=n Lt Hlm=n

Indeed, since f; € C™(T), the equality (a) comes from [5, Theorem 3.5,
while (b) follows from the computations performed for f in the first part of
the proof.
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Fix 1 < m < n and let I1,...,0,, > 1 be such that I + --- + I,

= n. The assumptions on (fj); ensure that ( fj[-m])j w*-converges to f"
in L®(Ay) X -+ X Ay(y))- By Lemma it follows that

myl1 .. lm myl1,..lm
Dyt (t) —— DY (1)

weakly in SP(#H). On the other hand, by |23, Lemma 2.3], we have, for every
()\1, ... 7)\m+1) € Rm+1,

(_1)k+lim—k+1

= Z Z om—k+1 f][k] (M(Xig), - n(Xiy)

x [T () = 1)? 11 (n(A) = 1).
j=1 1e{1,...com+11\{i1, i1}

This holds true as well if f; is replaced by f, with the same proof. In particu-
lar, the pointwise convergence of fj[k] to f*! implies the pointwise convergence
of ((fjon)l™); to (f on)l™ = glM. Together with the boundedness of each
(f j[k]) ; and hence the boundedness of ((f;01)I™);, we get the w*-convergence

of ((f; on)l™); to g™l in LA gy X -+ X Aq)- By Lemma and the
paragraph preceding it, it follows that

myl1 .. lm Myl lm
ijml?,A (t) J_>—oo> D' (t)

weakly in SP(H). Finally, after taking the limit as j — oo in the weak
topology of SP(H) in (4.4), we obtain

Z > Dppt Z DA (O}

m=1 l1,.,lm>1 m=1 l1,..,lm>1
Lt K T=n bt A h=n

which gives the desired formula for (™ (t) and concludes the proof. m

REMARK 4.5. Proposition [£.4]holds true as well if we simply assume that
o(U(0)) # T. Indeed, by picking e ¢ o(U(0)) and changing the function
U to e U (in that case, 1 ¢ o(e~U(0))) and f to h(z) = f(e"2) we
get o : R 3t f(U@R) - f(U0) = h(e ®U(t)) — h(e=®U(0)) so that
@ is differentiable in a neighborhood of 0. Moreover, it is easy to check
that Al (A1, ..., Ang1) = e fl(eON; .. e ),41) and (e 00))(¢) =
e~ U W) (t) so that
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k
k' 671.9 m+1 m —i07 07
=3 Y O e T @), e T ()

ey

I+ Hlm=
b k! —i0 m1 ~ ~
=3 e O (gl @), T ),
m=1 1,1 L
i+ +lm=k
where (fI™),(A1,. .., Ame1) = (PN, ..., e \py1). Tt is now easy to
check (using the construction of multiple operator integrals) that

PP U@ T (plmly ) = pOE)™(plmly

5. SP-differentiability for non-continuously differentiable func-
tions. In this section, we will prove the following main result of this paper.

MAIN THEOREM 5.1. Let 1 < p < oo andn € N. Let U : R — U(H)
be such that the function U : R > t +— U(t) — U(0) € SP(H) is n-times
differentiable on R. Let f : T — R be n-times differentiable with bounded nth
derivative £ . Consider the operator-valued function

@t fU() - fU(0)) € S"(H).

Then ¢ is n-times differentiable on R and for every integer 1 < k < n and
everyt € R,

(5.1)
k
k' m+1 m ~ ~
e®(t) = Z Z W[F(U(t» @M 1), T (8)).
m=1 l,.p>1 L
Wt =k

REMARK 5.2. It follows from the boundedness of multiple operator in-
tegrals given by Theorem that if U has bounded derivatives, then so
does .

REMARK 5.3. (1) Once the formula for the derivatives of ¢ has been
established, it is easy to check, by induction, that the operator Taylor re-
mainder defined by

R pu(t) == f(U(#) - FU(0) -

satisfies, for any t € R,
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Rn,f,U(t)

_ S [rU@@O)” glm) (Rzl,u(t), U®)(0) . U“’")(O)) |

l9!
m=1 Iy, lm>1 2

li++Hlm=n
where Ry i7(t) := U(t) and for any l; > 2,
l1—1
Ry, u(t) :=U(t) - Z Hﬁ(k)(o)‘
k=1

We refer to the proof of |5, Proposition 3.5(ii)| for more details and references.

(2) Theorem applies in particular to the function U(t) = e*AU with
U € U(H) and A € SE(H), and we retrieve [5, Corollary 3.6] in the more
general case of a function f with (not necessarily continuous) bounded nth
derivative. In particular, with the same proof as for [5, Corollary 3.6], we
obtain

n
(5.2) 1B, (Dllpsm < G D I1F ™ locll Al

m=1

where ¢, ,, is a positive constant depending on p and n.

To prove Theorem we will carefully approximate, on a subspace of
the Hilbert space H, the unitary operator U(0) by another unitary whose
spectrum is not the whole T, in order to use Proposition [£.4 The relevant
definitions and the first properties of the approximation are given in Sec-
tion [5.1} The key auxiliary results from Lemma will detail the regularity
of this approximation process.

5.1. Approximation of unitaries. Let V € U(H). For every j > 1,
define A; 1= {e2™ |0 <t < (j—1)/j} and set P; := EV(A;). Then (P});>1
is an increasing sequence of selfadjoint projections which converges strongly
to Iy. Recall that this implies that for every K € SP(H), PjK, KP; and
P; K P; converge to K in S? as j — oo. Moreover, P; commutes with V' and
the operator V; := P;VP; = P;V = VP; is unitary on the Hilbert space
H; := P;H and its spectrum satisfies o(V}) C A;.

Note that if K € SP(H), then P;KP; € SP(H) with ||P;KP;j||, < ||K||p
and we can see P;KP; as an element of SP(H;). Similarly, if X € SP(H;),
we can extend X on H and keep denoting this operator by X, and in that
case PjXPj = X3, & OrHj_.

PROPOSITION 5.4. Let 1 < p < oo. Let A € SE(H) and define Aj :=
P;AP;. Let n € N>g and let f : T — C be n-times differentiable such that
) s bounded.
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(1) FOT' every K17 ceey Kn—l € SP(H) and every j < N}
1Ay \n n—
[PV (=) (KL Koy)

iA
= [PV (TN (K, K1),
where K; j == PjK;P;.
(2) For every Ky,...,K, € SP(H),

VP (DK, Kog) i (PO () (K LK)

Proof. Let us prove (1). Recall that since "= is bounded, we have,
by construction, "¢ V) " (fIn=11) € B,,_1(S*(H)). Let us first etablish the
formula when K1, ..., K,_1 € S*(H). Since f*~1 is continuous on T" it is
sufficient, by a simple approximation argument, to prove the formula when
"1 is replaced by a trigonometric polynomial ¢ on T™ and by linearity,
we can assume that ¢ = fi ® -+ ® f,, where for any 1 < ¢ < n, f; is a
trigonometric polynomial on T. Since P; commutes with e and with V, it
is easy to check that for every 1 <i < n,

JA(SNV) Py = Pifi(e49V;) = Pifi(4V) = fi(e V)P,
It follows that

(e ) V(O (K- Kno1;)
= f1(e"Y V)P K P; fo(€ 4 V) Py Ko Py - - - P Ky 1 Pj fr (e V)
= f1(eYV)P K Py fa (e V)P Ko Py - - - P Ky, 1 Py fr (V)
= [P (N (K g, Knorg).

This proves the formula for ¢ = f*~1 and Ky,...,K,_; € S?(H). In par-
ticular, the formula holds true when K; € S? N SP, and approximating (in
the SP-norm) any K; € SP by a sequence of elements of 82 N SP and using
the fact that I'(¢"7V5) )" (fln=1y, ple Ly " (fI=1) € B,_1(SP(H)), we obtain
the desired formula.

For the proof of (2), we only make some minor changes: we first etablish
that for every Ki,..., K, € S*(H),

(5.3)  [PVE (N (K, Kyg) = [PV (P (R, Ky).

Since fI" € LT} A\v), by the w*-density of L®(\y) ® - - @ L®(\y) in
L®(TTM! A\y) and the w*-continuity of multiple operator mtegrals (see the
paragraph before Deﬁmtlon, it is sufficient to prove the identity when f ]
is replaced by ¢ € L*®(Ay) ® - -+ ® L>®(Ay), and by linearity, we can further
assume ¢ = f1®- - -® fn41, where for any 1 <i<n+1, f; € L°(\y). Note that
VP; = Vxa,;(V) = gi(V) where g;(x) = zx4,(z) and it is straightforward
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to check that (f; o gi)xa, = fixa,;. By |14, Corollary 5.6.29], we have

fi(VE) Py = (fiogi)(V)xa; (V) = ((fi o 9i)xa;)(V) = fi(V)xa,(V)
= fi(V)Fj,
and similarly, P;f;(V P;) = P;f;(V). The same computations performed to

prove (1) show that (5.3)) holds true. Moreover, this formula extends, as
before, when K7, ..., K, € SP(H). Finally, the fact that K; ; — K; in SP(H)

for every 1 < i < n together with V)" (fIn]) € B,,(SP(H)) yield
(VP IDN (K, Kg) = [TV (PP (K, o)
s [T (K, LK)

m—o0

in SP(H), which concludes the proof. =

5.2. Proof of the main result. In this subsection, we will prove The-
orem First of all, we need the following lemma. We postpone its proof
to the end of the paper to avoid repeating certain arguments and computa-
tions which, for some of them, will be very similar to those in the proof of

Theorem [5.11

LEMMA 55. Let 1 < p < oo andn € N. Let Ve U(H). Let A: R —
SE(H) be n-times differentiable on R with A(0) = 0. Define
U(t) := AV and U(t) = AOV -V € SP(H),
and, for every j € N,
A;(t) = P APy, Us(t) == OV and Uy(t) == U;(t)—U;(0) € SP(H),

where P; and V; = V P; are defined at the beginning of Section @ Then we
have the following properties:

(1) For every e > 0, there exist J € N and o > 0 such that

(5.4) Vi> IVt <a, [[eAOV - AOY| < et

(2) There exist « > 0 and a constant C > 0 such that

(55) VjieN,V|t| <a, |[eAOV_V|,<Clt| and ||eAOV -V, < CJt).
(3) For every j € N, U and /Uv] are n-times differentiable on R and for every

0<k<nandeveryt € R,

(k) (k)

(5.6) PU; ()P =T (1),
(4) For every € > 0, there exist J € N and a > 0 such that, for every
1<k<n-1,

(k)

(5.7) ViVt <a, OB =T @), <e
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(5) Let 0 < k <n—1. Then we can write

O () = TP (0) + tRu(t) and T, () = U; " (0) + tRI(t),

where, for every e > 0, there exist J € N and o > 0 such that
(5.8) Vi> J Yt <a, ||Ri(t) - RL(t)|p <e

Proof of Theorem [5.1] The proof will be divided into three steps. First,
we show that we can rewrite the function U in a convenient way. Next, we
will approximate the unitary U(0) in order to use Proposition Finally,
thanks to several estimates that will be using Lemma/[5.5, we will obtain the
result.

(k)

STEP 1. Simplification of the function U. First of all, note that by trans-
lation, it is sufficient to prove the result for t = 0. Let

V= U(0) € UH).

By continuity of U, U(t)V* — Iy as t — 0 in the operator norm, so that, for
t € I where [ is a real interval centered at t = 0, we have ||U(t)V* — Iy||
< 1/2. In particular, we can set A(t) := —ilog(U(¢t)V*) and we find that
A(t) € Bga(H). This function satisfies A(0) = 0 and A0V = U(t). More-
over, the assumption U(t) — U(0) € SP(H) implies that A(t) € SE.(H), and
since A(t) is obtained by means of a power series, the fact that U : R —
SP(H) is n-times differentiable on R implies that A : I — SE,(H) is n-times
differentiable on I. Alternatively, since log is C'°° in a neighborhood of 1,
this follows from [5, Theorem 3.5]. Hence, from now on, we will assume that

viel, U(t) =40y,
where A has the properties given above.

STEP 2. Initiation of the approximation process. For every j > 1, define
Aj:={e*™ | 0<t<(j—1)/j} and set, as in Section

Py = EV(4)).

Recall that the operator V; := P;VP; = P;V = VP; is unitary on the
Hilbert space H; := P;H and its spectrum satisfies o(V;) C A;. Define

Ai(t) == P AP, Uj(t) := 4OV, and  Uj(t) == Uj(t) — U;(0) € SP,
where A;(t) and fU:(t) can be seen as elements of either SP(H;) or SP(H).
Now, define
pj Rt f(U;) — f(U;(0)) € S"(H;).
The operator ¢;(t) acts as well on H and is equal to 0 on Hjl Since
e AV, € U(H;) and o(V;) C A; and hence o(V;) # T, by Proposition
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and Remark [£.5, ¢; is n-times differentiable in a neighborhood of 0, which
we can assume to be equal to I, so that we can write, for every t € I,

n—1 n—1 n
(5.9) () = " (0) — 19" (0) = 05 (1),
where 0;(t) = o(t) depends on j, and where <p§-n_1) and gogn) are given by

formula ([5.1)).
Since f € C"~Y(T), by |5, Theorem 3.5|, ¢ is (n — 1)-times differentiable
on R and for every t € R,

(1)

n—1
= Z Z u[p( " (@) (@), . T (1),

Ll !
m=1 o fp>1
lh++ln=n—1

Let us define

T= Y Y e ), . 00(0)),

m=1 l1,.,lm>1

5=y Y e @ o), T o))

N
m=1 1, m>1 1 m
Lt A lm=n

In particular, (pg-n) (0) = T}. To prove the theorem, we have to show that
(5.10) 1 (t) — " D(0) — T = oft)

as t — 0. Note that if n = 1, we do not use [5, Theorem 3.5|, and ([5.10)
reduces to

FU®) = FV) =t (FI)(0(0)) = o(t).
To prove our claim, let us write, for every j € N,
(5.11) () — eV (0) —¢T
= Li(t) = (T = Tj) + (" V() — " (0) - 1" (0)),
where
(5.12) Lj(t) = om0 () — 0"V (1) + 8"V (0) — o (0).

First, we will estimate the quantity 7" — 7} uniformly for j large enough,
and secondly, we will estimate the term L;(t) for ¢ small enough and j large
enough. Eventually, we will use (5.9) to estimate the last term appearing

in (5.11)), for a fixed integer j.
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STEP 3. Estimates in the approzimation process. Let us fix € > 0.

Estimate of T —Tj;. Let 1 < m < n and let ly,...,l; > 1 be such that
L+ F+lp=n Accordlng to Proposition ( ), if 7 > J! is large enough,

H[F<V>’"“<f[m]>]<0<h><o> S 0(0))
= [Pt WP U”ﬂ( 0)P;,..., U )Pl < e,
and, according to Lemma [5.5) - ), and to the uniform boundedness of
(F(‘/j)m+1(f[m]))j, if > J%is large enough,
m 1 m m
[ BT OB BT (0)F)

m (1)
(f[ ;™
It follows that for every j > max {J!, J?} =: J,

I @ ), ... T (0)
= [T 0), - T ) < 26

Hence, since T" and T are finite sums of such terms, there exist a constant
co and an integer Jy such that

(5.13) iz Jo, T~ Tillp < coe.
Estimate of L;(t). Recall that

0),....0;"" )]l < €

m+1

— 3

()

el (n—1)! (1)

= 411!--'lm![F(U m+1(f[m])](

l1+ +lm
n—1)! A O ymtt, L, (1) = (lm)
- > et oy @, 5 ),
m=1 . lp>1 LM
Lt tlm=n—1

where the last equality follows from Lemma [5.5(3) and Proposition [5.4](1).
When t = 0, ¢4V =V so we have

2" V(0)

n—1
DI DI e VL GO A ()}

m=1 lyelm>1
I+t =n—1

Fix1<m<n-1andl,...,l, >1such that [y +---+ 1, =n — 1. From
the expression (5.12) of L;(t), according to the latter and by linearity, if we
show that
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Q;(t) = [PV (flmhy @G gy, ..., 0 (1))
— e <f[m1>1<ff?””<t>, 0 )

m ~(lm
PO (@ ), T )
= (PO @ @0), . T (0)
satisfies [|@Q;(t)]|, < ce|t| for some constant ¢ depending only on p,m
l1,..., 1y, f and where j is large enough and ¢ small enough, a similar in-

equality will hold true for ||L;(t)|[p.
Let us write

Qj(t) = S1,;(t) + S2,5(t) + S3,5(2),

where
Sl ](t) _ [F(eiA(t)V)m+1 (f[m]) B F(eiAj(t)V)m+1 (f[m])](U(ll)(t), el U(lm)(t)),
Soi(t) = [ VI (plmly _ pOOTE gy @0y, G0 (1))

O g @ e, T @)

—[pE (f[mm(Uj(“)(t), LT ),
Ssj(t) = [ <V>’”“<f[m1>]<0<h>< t),..., 00 ()

— [ m“(f[m])](U(’l (0),..., 0 (0))

(O g @ ), LT (0)

[ ’"“(f[mm( Yy, ).

_ First, since U is n-times differentiable and 1 < I;, < n— 1, the derivatives
U) are SP-bounded in a neighborhood of 0. Hence, according to Corol-
lary and Lemma [5.5(1), there exist a constant ¢;, an integer J; and

a > 0 such that
(5.14) Vj>J, Yt <a, S|, < ca]letiDV — AOV || < et
Next, according to Corollary [3.6] we have
m—+1

zA (t) m—
So(t) =1t Z( V)4,(V) q+1(f[m+1])]

A (t
(Ual)(t)’ o, ej()tv—v o), g(zm(t))

REVIO! m— "
— [TV plmt )]

(1) ) €OV -V =) ()
<Uj Yt),. U l(t),ij] “(),....U; (t))).
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According to Lemma [5.5(2)(4), there exist 8 > 0 and an integer J € N such
that, for every 1 < k < m, every j > Jo and every [t| < 3,

(k)

- ~ Ay
T (1) - T, (@), < e and | T =

t

is bounded.
P

Since U*)(t) and ﬁ;(lk)

since the operators I'(¢ are uniformly bounded with

respect to t, there exists a constant C' depending on p, m, f and U such
that

(t), 1 < k < m, are locally bounded around 0, and
HIOvya vyt plme))

m—+1
(5.15) Vi = Ja, VIt < B, [[S2 (B)llp < [t Y Ce=: caelt].
i=1

Finally, to estimate Ss;(t), let us write, according to Lemma [5.5(5),

T () = T (0) + tRy, (1) and ﬁ;(lk)(t) = ﬁ;(lk)(O) - tR{k (t).

It follows that

[PV OO ), L, O ()
- [F(V)m“(f[m})](ﬁ(h)( 0),...,00)(0))

= > T (DAL, - An(D)),
Ay(t)e{UE)(0), tRy, (t)}
J41<i<m, A; (t):tRli (t)

and similarly

(1) (Im)

(0),....T; (1))
— [ @), U ()
= [P (DB, - ., BIL(1)).

Bl (0e{T; " (0), R} (1))
31<i<m, B ()= tR{i (t)

m+1

[P (fmh) (O

(1)

Hence, we only have to estimate the terms
LA, - A (0) = [P (DB ), - BR(9)),

- . )
where A;(t) = U (0) if and only if B! (t) = UJ( (0). Moreover, to simplify
the notations, we assume that Ay (t) = tR, (t) and BY ( ) = tRJl( ). In that
case,
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(LS AL ), A (@) = (PO FDIBI), - Bun(0))
= t([P" T (N (R, (£), Aa (1), - ., Am(1))
— [P (R] (1), BI(t), ..., BL,(1))).

According to Lemma [5.5(4)(5), there exist an integer J and 4 > 0 such
that, for every 2 <1i < m,

Vi > Ji VIt <+, ||R,(t) — Rl (1) <e and [A;i(t) — Bl(t)], < e
It follows that there exists a constant C’ > 0 such that

™AL, - A (0) = [TV (DB (@), - BL(@)
< C'elt].

m—+1 m—+1

In particular, there exist an integer J3, v > 0 and a constant c3 > 0 such
that

(5.16) Vj > J3, V|t| <7, HSgJ(t)Hp < 636|t|.

Setting ¢ = ¢1 + c2 + ¢3, 0 = min{a, 5,7} and J := max {Jy, Ja, J3}, we
deduce from (5.14)—(5.16) that

(5.17) Ui 2 <5 Qi) < el

From the definition (5.12)) of L;(t), it follows that there exist J € N, ¢’ > 0
and a constant ¢’ > 0 such that

(5.18) Vi>JV <o L)l < Celt].
Conclusion. Fix an integer jo > max {Jy, J'}. According to (5.9), there
exists ¢” > 0 such that
-1 -1
it <" el V() — el (0) = 4 (0) ] < eltl.
According to (5.13)) and ([5.18]), we deduce from the equality (5.11)) that, for
every t € I such that |t| < min {¢’, 0"},

"0 (8) = "D (0) = ¢T |l < (¢ + co + 1elt].
Hence, we proved that
P (t) — " (0) — 1T = o(1),

which shows that ¢~ is differentiable at t = 0 with (™ (0) = T, and
finishes the proof.

We conclude this paper by proving Lemma [5.5

Proof of Lemma[5.5 To prove (1), note that by Duhamel’s formula (see,
e.g., [3, Lemma 5.2]), we have

|40V — OV, = |40 — A, < JJAE) — A;(0)]l,.
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Recall that A(0) = 0, so we can write A(t) = tA(0) + o(t) as t — 0, and
hence A;(t) = tP;A’'(0)P; + Pjo(t)P;. It follows that
IA®) = A (D)llp < [t 1A'(0) = PAY(0) Pyl + [lo(t) — Pjo(t) Pyl
Since A'(0) € SP(H), for j large enough, we have
I A/(0) = PA(0) Pl < e,
and for |¢| small enough, we have
lo(t) = Pjo(t) Pjllp < 2[lo(t)ll, < elt],
which gives the desired inequality.

The proof of (2) is similar. Indeed, it suffices to write

(5.19) |40V = V|, = [[e4O — e, < LAl = It ’ 5

<,
p

where C' := 2[|.A'(0)||,, for ¢ small enough. The proof of the second inequality
in (5.5) is identical.
For the rest of the proof, we let g : t — e. Then we can write

U(1) = [9(A(1)) — g(AO)]V and  Tj(t) = [g(Aj(t)) — 9(A; (0))]V P;.

Since g € C*°(R) with bounded derivatives, by Corollary M U and if\; are
n-times differentiable on R and for every 1 < k < n and every ¢t € R,

k
6200 0Y0=(Y ¥ D)

m=1 1>l L

k
—~ (k) k! ;
sy G- (X X pPhow®)ve.

m=1 Iq,..lm>1
i+ +lm=k

Dyt (£) = (LA (D)AW @), ... A (1)),
D}, 0, (1) = [PAO™ (P4 W(0), ..., (4) (1)

= [SO" G (PAW W)y, . PA (1) ).
To complete the proof of (3), note that for every t € R,
PU;(t)P; = Pi(e 4OV Pj — VP) Py = 4OV P — VP = Uy(1),

which follows from the fact that P; commute with etAi(®) and V. Hence,
differentiating this formula k times gives the result.
Next, according to the latter, to prove (4), we only have to estimate

||Dl17 7 7n( )V Dzjl l (t)VPJHP

m
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foralll<m<n-—1andly,...,l,, > 1suchthat iy +---+1,, <n-—1. But
it is easy to check that

Dl ., VP =D] , (t)P,V=D]

by Iy lm

)V,
so that
(5.22) | Dyy, 1, D)V — Dfl,_,_,lm (OVPllp = 1Dyt () = DI, (Bl

Denote T} := [F(A(t))m+1(g[m])] and Ty j = [F(Aj(t))erl(g[m])]. We have

Dy, 1) =Df, (1)

= (LA (1), ... A(“"’( t)) — Ti(AM(0),..., Al)(0)))
+ (T(AD(0), ..., A4)(0)) — T,(PAW(0) Py, ..., A (0) 7))
+ (Tt(PjA(ll)(O)P -, P AU (0)P) =T (P AW (0) Py, . .., P AN (0)
+ (T (P AM(0) Py, ..., PLAY (0)Py) ~ T, (PR AN (1) Py, ., PRAU) (1)

=K1 (t) + Ko j(t) + K3 (t) + K4 (1).

The continuity of A), 1 < k < m, and the uniform boundedness of (T});cr
give the existence of (' (depending on f, A and p) and a; > 0 such that

Vit <ar, K1 (@)l < C1 max A () = A 0)]], < e

To estimate Ko ;(t), it is enough to notice that since A!)(0) € SP(H),
1 <k <m, we have

P AU (0)F; — AU(0),
in SP as j — oo, so that
K2, (1)]] < C1 max [JAM(0) — BLAMW(0) Py, < e

for j > J large enough. For the third term, by Corollary [3.7] there exists a
constant C (depending on f and p) such that

1Ks3,3(0)]lp < CallAE) — A; )|l B A 0) By - [P AT (0) Byl <

for j large enough and || < ay small enough, according to the proof of (1).
Since Ky j(t) can be estimated like K (t), this concludes the proof of (4).
Finally, to prove (5), write, for 0 <k <mn —1 and ¢t # 0,

(&) = TW(0)

; and Ri (t) ==

R (t) :=

so that

UR () =U®(0) + tRe(t) and U;  (t) =U;
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Using the same notations as before, it follows from ([5.20)—(5.22) that to
estimate 4
1R5(t) = By (8)
it suffices to estimate the quantity
1 , ,
Tl Dt (8) = Dy, (0) = (D7 () = Dy (0)]

forall<m<mn-1andl,...,l,, > 1suchthat [y +---+1, <n—1.To
do so, let us write, with the notations 7; and T} ; introduced above,

(Diyotye () = Dy 0, (00) = (D] (t) =D, (0))
:((Tt TtJ)(P-A (t) - PAlm() J))
+ (T, - To) (AW (), ... ,A(W( t) - (T — To) (P AN (1) Py, P~A“m><t>Pj>>
+ [To(PAM(0) Py, ..., PLAY (0)P;) — To(PA“”() Py,..., P A (1) P))
+ To(AW( >,...7A<’m (t)) = To(AM(0),...., Al (0) ]

Denote by L] (t) and L () the quantities on the first two lines in the last
equality, and by Lé(t) the quantity on the last two lines.
For L{, by the boundedness of A(lk)(t), 1 < k < m, in a neighborhood of
0 and by Corollary there exists D; > 0 such that
IZA®)]lp < DillA;(t) — A)lp < eft]
for j large enough and [¢| small enough, according to item (1).

For the term L%, by Corollary 7land (5.19| -7 there exists of Dy > 0 such
that
1Ty = Tollg,n(sv () < Dall AWl < Dalt]

for ¢ small enough and for some constant D). Using again the boundedness
of AW (), 1 < k < m, in a neighborhood of 0, we get the existence of Dy
such that

150l < D3t max AW (t) — PLAW (1) Py, < eft],

where the last inequality is obtalned by writing
AW (1) = AW (0) + t A (0) + o(t),
and applying the same computations as in item (1).
Finally, let us write, for each 1 < k < 'm,
AR (1) — A (0)
t

AW () = AW (0) + ¢ = AW (0) 4 tGy (1),

and
PAW@P; = BAW(O)P; +thGLOF)
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We have
1Gk(t) — PiGe(t) Pyl

) (4) — Al

< HA B (t) t AT  qaeno)|| 4 At 0) - PAGD )5y,
p

) (1) — AW (0
o | o,
p
W) (4) — Allk)

<o AU AEO )| 4 at0) - A 05
p

<e€

for j large enough and ¢ small enough. Now, following the same computations
as those used to estimate the term S ;(¢) in the proof of Theorem [5.1], we
obtain, taking larger j and smaller |¢| if necessary, the estimate

ILA@)] < elt]
In particular, we have proved that there exist J € N and a > 0 such that
iz J o <o, |[Bi() - ROl < e
This concludes the proof of the lemma. u
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