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Triple operator integrals valued in trace class operators

`p-spaces

• Let 1 ≤ p < +∞.

`p =

{
x = (xn)+∞n=1

:
∞∑
n=1

|xn|p <∞

}

‖x‖p = (
∑∞

n=1
|xn|p)1/p

• If p = +∞.

`∞ =

{
x = (xn)+∞n=1

: sup
n
|xn| <∞

}
‖x‖∞ = supn |xn|.

• If 1 ≤ p ≤ q ≤ ∞,

`1 ⊂ `p ⊂ `q ⊂ `∞.
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Bounded operators

Let X and Y be normed spaces.

• A linear operator T : X → Y is called bounded if there exists

a constant C ≥ 0 such that for all x ∈ X ,

‖T (x)‖Y ≤ C‖x‖X .

‖T‖ = inf C .

• We denote by B(X ,Y ) the space of all bounded linear

operators from X into Y .

If X = Y , we simply write B(X ).
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Bounded operators

• For every operator Q ∈ B(`p, `q) there exists a (in�nite)

matrix A = (ajk)∞j ,k=1
such that Q({xn}∞n=1

) = A {xn}∞n=1
.

•


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...

. . .



x1
x2
x3
...

 =


∑∞

k=1
a1kxk∑∞

k=1
a2kxk∑∞

k=1
a3kxk
...


• From now on, we identify any element of B(`p, `q) with its

corresponding matrix.
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Schatten classes Sp

Let H be a separable Hilbert space and let T ∈ K(H), where K(H)
is the set of compact operators on H. Then T ∗T is compact, and

so is |T | =
√
T ∗T .

Moreover, |T | is self-adjoint.

There exists then a decreasing sequence of non-negative numbers

(λn(T ))n and an orthonormal family (un)n ∈ H such that

|T | =
∑
n

λn 〈., un〉 un.

By polar decomposition, there exists a partial isometry U ∈ B(H)
such that T = U|T |.
Setting vn = U(un), we obtain an orthonormal family (vn)n such

that

T =
∑
n

λn 〈., un〉 vn.
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Schatten classes Sp

Definition

We de�ne, for 1 ≤ p <∞,

Sp(H) = {T ∈ K(H) | (λn(T ))n ∈ `p} .

If T ∈ Sp(H), we set ‖T‖p = ‖(λn(T ))n‖`p .

Theorem

(Sp(H), ‖.‖p) is a Banach space.

Let 1 ≤ p ≤ q <∞. We have

S1(H) ⊂ Sp(H) ⊂ Sq(H) ⊂ B(H).

The elements of the space S2(H) are called Hilbert-Schmidt

operators and the elements of S1(H) the trace class operators.
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Schatten classes Sp

Example : Let T =


λ1

. . .

λn
. . .

 be the �nite or in�nite

diagonal matrix with diagonal (λn)n.

Then

T ∈ Sp if and only if (λn)n ∈ `p
and ‖T‖p = ‖(λn)n‖p.
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Schatten classes Sp

The case p=2 : let T ∈ B(`2) and let (ti ,j)i ,j≥1 be the associated

in�nite matrix. Then T ∈ S2(`2) if and only if∑
i ,j≥1
|ti ,j |2 <∞.

Let (hi )i∈N be a hilbertian basis of `2. Then T ∈ S2(`2) if and only

if ∑
i∈N
‖T (hi )‖2 <∞.
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Schur multipliers

• Let M = (mij)1≤i ,j be a family of complex numbers.

We say that M is a Schur multiplier on Sp (resp. on B(`p, `q))
if for any matrix [aij ] ∈ Sp (resp. in B(`p, `q)), the Schur

product of M and A

M ∗ A = [mijaij ]

belongs to Sp (resp. to B(`p, `q)).

• If M is a Schur multiplier then M is bounded.

• If p = 2, then this condition is su�cient on S2.
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Schur multipliers

Example : The main triangular truncation. Let

M =


1 1 . . .
0 1 1 . . .
0 0 1 1 . . .
. . . 0 0 1 . . .
. . . . . . . . . . . . . . .



If A = (aik), then M ∗ A =


a11 a12 . . .
0 a22 a23 . . .
0 0 a33 a34 . . .
. . . 0 0 a44 . . .
. . . . . . . . . . . . . . .


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Schur multipliers

• M is not a Schur multiplier on B(`2).

• In 1970, Kwapie« and Pelczy«ski proved that if q ≤ p, M is

not a Schur multiplier on B(`p, `q).

• In 1976, Bennett proved that if p < q, M is a Schur multiplier

on B(`p, `q).
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Schur multipliers

There is a famous characterization of Schur multipliers on B(`2).

Theorem

Let M = (mij)i ,j∈N ⊂ C. The following are equivalent :

(i) M is a Schur multiplier on B(`2).
(ii) There is a Hilbert space H and two bounded sequences (xj)j∈N
and (yi )i∈N of elements of H such that

∀i , j ∈ N, mij = 〈xj , yi 〉 .
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Double operator integral

Let H be a separable Hilbert space.

Let A,B be normal operators on H (possibly unbounded).

Let λA, λB be scalar valued spectral measures for A and B .

For A, this means that λA is a �nite measure on σ(A) such that if

EA denotes the spectral measure of A, then for any Borel subset

∆ ⊂ σ(A),
λA(∆) = 0⇐⇒ EA(∆) = 0.

Let

ΓA,B : L∞(λA)⊗ L∞(λB) −→ B(S2(H), S2(H))

de�ned by

ΓA,B(f ⊗ g)(X ) = f (A)Xg(B)

for any f ∈ L∞(λA), g ∈ L∞(λB) and X ∈ S2(H).
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Double operator integral

Then ΓA,B uniquely extends to a w∗−continuous isometry

ΓA,B : L∞(λA × λB) −→ B(S2(H),S2(H)).

Operators of the form

ΓA,B(φ) : S2(H) −→ S2(H)

for φ ∈ L∞(λA × λB) are called double operator integrals.

The theory of double operator integrals started with

Birman-Solomyak, in a series of three papers in 1966, 1967, 1973.

Outstanding developments and applications were obtained by

Peller, and by Sukochev and his co-authors in the last 20 years.
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Double operator integral

Assume that H is �nite dimensional, say of dimension N. Let

A =
N∑
i=1

λiPi and B =
N∑
j=1

µjQj

be the spectral decompositions of A and B .
Meaning for A : (e1, . . . , eN) is a orthonormal basis of eigenvectors

of A, Pi are the corresponding orthogonal projections onto Cei and
λi are the corresponding eigenvalues.

Then, for any φ : C2 → C,

[ΓA,B(φ)](X ) =
N∑

i ,j=1

φ(λi , µj)PiXQj ,X ∈ MN .

Hence, ΓA,B(φ) behaves like the Schur multiplier associated with

the family

(φ(λi , µj))1≤i ,j≤N
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Connection with functional calculus and perturbation theory

Let f : R→ R be a C1-function such that f ′ is bounded.
Let f [1] : R2 → R be de�ned by

f [1] (x , y) :=

{
f (x)−f (y)

x−y , if x 6= y

f ′(x), if x = y
, x0, x1 ∈ R.

Then f [1] is a bounded continuous function.

Let A,D be selfadjoint operators with D ∈ S2(H). Then

[ΓA+D,A(f [1])](D) = f (A + D)− f (A).

It is as if we had

ΓA+D,A(f [1]) =
f (A + D)− f (A)

(A + D)− A
.
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An application to operator Lipschitz functions

Let A,B be self-adjoint on H.

If f is Lipschitz on R and B ∈ Sp(H), do we have

f (A + B)− f (A) ∈ Sp(H)?

• False when p=1 : Counter-example by Farforovskaya (1972).

• When p=1, V. Peller proved that the result is true when f
belongs to certain classes of functions (1985).

Theorem (D. Potapov, F. Sukochev, 2011)

Let 1 < p <∞. There exists a constant cp > 0 such that for any

Lipschitz function f : R→ C and for all A,B self-adjoints with

B ∈ Sp(H),

‖f (A + B)− f (A)‖p ≤ cp‖f ‖Lip
1
‖B‖p.
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• When p=1, V. Peller proved that the result is true when f
belongs to certain classes of functions (1985).

Theorem (D. Potapov, F. Sukochev, 2011)

Let 1 < p <∞. There exists a constant cp > 0 such that for any

Lipschitz function f : R→ C and for all A,B self-adjoints with

B ∈ Sp(H),

‖f (A + B)− f (A)‖p ≤ cp‖f ‖Lip
1
‖B‖p.
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Peller's Theorem

Let A,B be normal operators on a separable Hilbert space H.

Let S1(H) be the space of trace class operators on H.

Theorem (Peller's Theorem)

For any φ ∈ L∞(λA × λB), the following are equivalent :

(i) ΓA,B(φ) restricts to a bounded map S1(H)→ S1(H).
(ii) There exist a Hilbert space K and two functions

a ∈ L∞(λA;K ) and b ∈ L∞(λB ;K ) such that, for a.e. (s, t),

φ(s, t) = 〈a(s), b(t)〉 .

In this case, ‖ΓA,B(φ) : S1(H)→ S1(H)‖ = inf ‖a‖‖b‖.
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Bilinear Schur multipliers

• A three-dimensional matrix M = {mikj}i ,k,j≥1 with entries in

C is called a bilinear Schur multiplier onto Sp if the following

action

TM(A,B) :=
∑

i ,j ,k≥1
mikjaikbkjEij ,

A = {aij}i ,j≥1,B = {bij}i ,j≥1 ∈ S2,, de�nes a bounded bilinear

mapping from S2 × S2 onto Sp(`2).

• If M is a Schur multiplier then M is bounded.

• If p = 2, then this condition is su�cient on S2.
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Triple operator integral

Let H be a separable Hilbert space.

Let A,B,C be three normal operators on H.

Let λA, λB , λC be scalar valued spectral measures for A,B,C .

Write S2 = S2(H) and let B2(S2 × S2, S2) be the space of bilinear

maps from S2 × S2 into S2.

Let

ΓA,B,C : L∞(λA)⊗ L∞(λB)⊗ L∞(λC ) −→ B2(S2 × S2,S2)

de�ned by[
ΓA,B,C (f ⊗ g ⊗ h)

]
(X ,Y ) = f (A)Xg(B)Yh(C ).

for any f ∈ L∞(λA), g ∈ L∞(λB), h ∈ L∞(λC ) and X ,Y ∈ S2(H).
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Triple operator integral

Theorem

ΓA,B,C uniquely extends to a w∗−continuous isometry

ΓA,B,C : L∞(λA × λB × λC ) −→ B2(S2 × S2, S2).

Such constructions go back (at least) to Pavlov (1969).

Operators of the form

ΓA,B,C (φ) : S2 × S2 −→ S2

for φ ∈ L∞(λA × λB × λC ) are called triple operator integrals.

Alternative de�nitions of multiple operator integrals appear in

important papers by Peller and also by Potapov-Skripka-Sukochev.
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Triple operator integral

Let A,B,C be normal operators on H, and set N = dim(H).
Let

A =
N∑
i=1

λiPi and,B =
N∑

k=1

µkQk and C =
N∑
j=1

νjRj

be their spectral decompositions.

Proposition

For any φ : C3 → C and any matrices X and Y ,

[ΓA,B,C (φ)](X ,Y ) =
N∑

i ,j ,k=1

φ(λi , µk , νj)PiXQkYRj ,X ∈ MN .

This shows that ΓA,B,C (φ) behaves like the bilinear Schur multiplier

associated with the family

(φ(λi , µk , νj))1≤i ,k,j≤N .
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Question

What are the functions φ for which ΓA,B,C (φ) maps S2 × S2

into S1 ?
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A formula for bilinear Schur multipliers S2N × S2N → S1N

Theorem (C., Le Merdy, Potapov, Sukochev,

Tomskova)

Let M = {mikj}1≤i ,k,j≤N be a family of complex numbers. Consider

the bilinear Schur multiplication

TM : S2

N × S2

N → S1

N .

Then ‖TM‖ < 1 if and only if there exist a Hilbert space K and two

families {aik}1≤i ,k≤N and {bjk}1≤j ,k≤N of elements of K such that

mikj = 〈aik , bjk〉 , i , k , j ≥ 1

and

‖aik‖ < 1 and ‖bjk‖ < 1, i , k , j ≥ 1.
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Triple operator integrals mapping S2 × S2 → S1

Let A,B,C be normal operators on a separable Hilbert space H.

Main Theorem

For any φ ∈ L∞(λA × λB × λC ), the following are equivalent :

(i) ΓA,B,C (φ) is a bounded bilinear map S2(H)× S2(H)→ S1(H).

(ii) There exist a Hilbert space K and two functions

a ∈ L∞(λA × λB ;K ) and b ∈ L∞(λB × λC ;K )

such that

φ(r , s, t) = 〈a(r , s), b(s, t)〉 for a.e. (r , s, t).

In this case,

‖ΓA,B,C (φ) : S2(H)× S2(H)→ S1(H)‖ = inf ‖a‖‖b‖.
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Triple operator integrals and perturbation theory

Let f : R→ R be a C2-function such that f ′′ is bounded.
Let f [2] : R3 → R be de�ned by

f [2] (x , y , z) :=


f [1](x ,y)−f [1](y ,z)

x−z , if x 6= z
∂

∂x
f [1](x , y), if x = z

.

Then f [2] is a bounded continuous function.

Let A,D be selfadjoint operators with D ∈ S2(H). Assume that A
is bounded, so that we can de�ne separately

f (A + D)− f (A) and
d

dt
(f (A + tD))|t=0.

Proposition

f (A + D)− f (A)− d

dt
(f (A + tD))|t=0 = [ΓA+D,A,A(f [2])](D,D).
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Triple operator integrals and perturbation theory

Thank you for your attention !
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