TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

TRIPLE OPERATOR INTEGRALS VALUED IN
TRACE CLASS OPERATORS

Clément Coine
University of Bourgogne - Franche-Comté

University of New Mexico,
March 2, 2017

Joint work with Christian Le Merdy and Fedor Sukochev



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPER ORS

£p-SPACES

o letl < p< +o0.

gp = {X = (Xn)jii . Z |Xn|p < OO}

n=1

Ix[lp = (3252 [xa]P)/P



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPER ORS

£p-SPACES

o letl < p< +o0.

gp = {X = (Xn)jii . Z |Xn|p < OO}

n=1

Ix[lp = (3252 [xa]P)/P
o If p=+o0.

by = {x = (x,,);“;x{ L sup |xp| < oo}
n

Ixlleo = supy, |xal.



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLAS OPERATORS

£p-SPACES

o letl < p< +o0.

tp = {X = ()23 : Z [xn|P < OO}
n=1

Ix[lp = (3252 [xa]P)/P
o If p=+o0.

by = {x = (x,,);“;x{ L sup |xp| < oo}
n

[xl[oo = supy, [xal-
e If1<p<g<oo,

Uy Clp, Clg Clu.
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BOUNDED OPERATORS

Let X and Y be normed spaces.

e A linear operator T : X — Y is called bounded if there exists
a constant C > 0 such that for all x € X,

ITCy < Clix|lx-

| T|| = inf C.
e We denote by B(X, Y) the space of all bounded linear

operators from X into Y.
If X =Y, we simply write B(X).
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e For every operator Q € B({p,{,) there exists a (infinite)
matrix A = (ajk)?%— such that Q({xn},;21) = A{xa} ;.
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BOUNDED OPERATORS

e For every operator Q € B({p,{,) there exists a (infinite)
matrix A = (ajk)?%— such that Q({xn},;21) = A{xa} ;.

o0
ajr a2 a3 ... X1 D ke ALkXk
(o)
dp1 a2 43 ... X2 Z k=1 92k Xk
[ ] =

o0
as31 a3 asz ... X3 Zk:l askXk

e From now on, we identify any element of B(¢p, {q) with its
corresponding matrix.
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SCHATTEN CLASSEs SP

Let H be a separable Hilbert space and let T € KC(H), where K(H)
is the set of compact operators on H. Then T*T is compact, and

sois |[T|=vT*T.

Moreover, | T| is self-adjoint.
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SCHATTEN CLASSEs SP

Let H be a separable Hilbert space and let T € KC(H), where K(H)
is the set of compact operators on H. Then T*T is compact, and
sois |[T|=vT*T.

Moreover, | T| is self-adjoint.

There exists then a decreasing sequence of non-negative numbers
(An(T))n and an orthonormal family (u,), € H such that

ITI=> " An (., n) tn.

By polar decomposition, there exists a partial isometry U € B(H)
such that T = U|T|.
Setting v, = U(up), we obtain an orthonormal family (v,), such

that
T = Z An .y Un) Vp.



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE C OPERATORS

SCHATTEN CLASSEs SP

DEFINITION
We define, for 1 < p < oo,

SP(H) ={T € K(H) | (An(T))n € Lo} -

If T e SP(H), weset || T, = [[(An(T))nlle,-



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLAS OPERATORS

SCHATTEN CLASSEs SP

DEFINITION
We define, for 1 < p < oo,

SP(H) ={T € K(H) | (An(T))n € Lo} -

If T e SP(H), weset || T, = [[(An(T))nlle,-

THEOREM
(Sp(H), |-lp) is a Banach space.




TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

SCHATTEN CLASSEs SP

DEFINITION
We define, for 1 < p < oo,
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SCHATTEN CLASSEs SP

DEFINITION
We define, for 1 < p < oo,

SP(H) ={T € K(H) | (An(T))n € Lo} -

If T e SP(H), weset || T, = [[(An(T))nlle,-

THEOREM
(Sp(H), |-lp) is a Banach space.

Let 1 < p < g < oo. We have

SY(H) C SP(H) C SI(H) C B(H).

The elements of the space S?(H) are called Hilbert-Schmidt
operators and the elements of S1(H) the trace class operators.
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SCHATTEN CLASSEs SP

A1

Example : Let T = h \ be the finite or infinite
n
diagonal matrix with diagonal (A,)s.

Then
T €SP ifandonly if (A\y)n€4p

and (| T{lp = [[(An)allp-
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SCHATTEN CLASSEs SP

The case p=2: let T € B(¢?) and let (t;;);;>1 be the associated
infinite matrix. Then T € S2(¢2) if and only if

Z ‘t,'d"z < o0.

ij>1
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SCHATTEN CLASSEs SP

The case p=2: let T € B(¢?) and let (t;;);;>1 be the associated
infinite matrix. Then T € S2(¢2) if and only if

2.

ij>1

t,'J’z < 00.

Let (h;)ien be a hilbertian basis of /. Then T € S2(4,) if and only

if
DI <

ieN
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SCHUR MULTIPLIERS

e Let M = (mjj)i<;j be a family of complex numbers.
We say that M is a Schur multiplier on SP (resp. on B({p,¢4))
if for any matrix [a;;] € SP (resp. in B({p,{q)), the Schur
product of M and A

Mx A= [m,-ja,-j]

belongs to SP (resp. to B(p,{q)).
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SCHUR MULTIPLIERS

e Let M = (mjj)i<;j be a family of complex numbers.
We say that M is a Schur multiplier on SP (resp. on B({p,¢4))
if for any matrix [a;;] € SP (resp. in B({p,{q)), the Schur
product of M and A

M+ A = [mjaj]
belongs to SP (resp. to B(p,{q)).

e If M is a Schur multiplier then M is bounded.
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SCHUR MULTIPLIERS

e Let M = (mjj)i<;j be a family of complex numbers.
We say that M is a Schur multiplier on SP (resp. on B({p,¢4))
if for any matrix [a;;] € SP (resp. in B({p,{q)), the Schur
product of M and A

M+ A = [mjjajj]
belongs to SP (resp. to B(p,{q)).
e If M is a Schur multiplier then M is bounded.

e If p =2, then this condition is sufficient on S2.
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SCHUR MULTIPLIERS

Example : The main triangular truncation. Let

1 1 ...
0 1 1
M=1|0 0 1 1
0 0 1
a1l a2
0 ax ax

If A= (a,-k), then M x A = 0 0 a3z as
0 0 daqa
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SCHUR MULTIPLIERS

e M is not a Schur multiplier on B(¢3).
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e M is not a Schur multiplier on B(¢3).

e In 1970, Kwapien and Pelczynski proved that if g < p, M is
not a Schur multiplier on B(¢p, {4).
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SCHUR MULTIPLIERS

e M is not a Schur multiplier on B(¢3).

e In 1970, Kwapien and Pelczynski proved that if g < p, M is
not a Schur multiplier on B(¢p, {4).

e In 1976, Bennett proved that if p < g, M is a Schur multiplier
on B(lp,4q).
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SCHUR MULTIPLIERS

There is a famous characterization of Schur multipliers on B(¢2).

THEOREM
Let M = (mjj)jjen C C. The following are equivalent :
(i) M is a Schur multiplier on B(¢3).

(if) There is a Hilbert space H and two bounded sequences (x;)jcn
and (y;j)ien of elements of H such that

\V/I,_] € Na mjj = <X_]7yl> 0
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DOUBLE OPERATOR INTEGRAL

Let H be a separable Hilbert space.
Let A, B be normal operators on H (possibly unbounded).
Let A, Ag be scalar valued spectral measures for A and B.
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Let H be a separable Hilbert space.
Let A, B be normal operators on H (possibly unbounded).
Let A, Ag be scalar valued spectral measures for A and B.

For A, this means that A4 is a finite measure on o(A) such that if
E, denotes the spectral measure of A, then for any Borel subset
A Co(A),

)\A(A) =0« EA(A) =0.
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DOUBLE OPERATOR INTEGRAL

Let H be a separable Hilbert space.
Let A, B be normal operators on H (possibly unbounded).
Let A, Ag be scalar valued spectral measures for A and B.

For A, this means that A4 is a finite measure on o(A) such that if
E, denotes the spectral measure of A, then for any Borel subset
A Co(A),

)\A(A) =0« EA(A) =0.

Let
B 129(\) @ L®(Ag) — B(S*(H), S*(H))

defined by
ME(f @ g)(X) = f(A)Xe(B)

for any f € L®(\a),g € L°(\g) and X € S%(H).
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DOUBLE OPERATOR INTEGRAL

Then B uniquely extends to a w*—continuous isometry
B (M4 x Ag) — B(S?(H), S?(H)).
Operators of the form
rB(¢) : S(H) — S*(H)

for ¢ € L>(Aa x Ag) are called double operator integrals.
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DOUBLE OPERATOR INTEGRAL

Then B uniquely extends to a w*—continuous isometry
B 1A 4 x Ag) — B(S?(H), S2(H)).
Operators of the form
r48(¢) : S*(H) — S*(H)
for ¢ € L>(Aa x Ag) are called double operator integrals.

The theory of double operator integrals started with
Birman-Solomyak, in a series of three papers in 1966, 1967, 1973.
Outstanding developments and applications were obtained by
Peller, and by Sukochev and his co-authors in the last 20 years.
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DOUBLE OPERATOR INTEGRAL

Assume that H is finite dimensional, say of dimension N. Let

N N
A:Z)\;Pi and B:Zuij
i=1 j=1

be the spectral decompositions of A and B.

Meaning for A : (e1,...,en) is a orthonormal basis of eigenvectors
of A, P; are the corresponding orthogonal projections onto Ce; and
A; are the corresponding eigenvalues.
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N N
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DOUBLE OPERATOR INTEGRAL

Assume that H is finite dimensional, say of dimension N. Let

N N
A:Z)\;Pi and B:Zuij
i=1 j=1

be the spectral decompositions of A and B.

Meaning for A : (e1,...,en) is a orthonormal basis of eigenvectors
of A, P; are the corresponding orthogonal projections onto Ce; and
A; are the corresponding eigenvalues.

Then, for any ¢ : C2 — C,

N

[FEB(@)](X) = D d(Ni, 1) PiXQj, X € My.

ij=1

Hence, TB(¢) behaves like the Schur multiplier associated with
the family

(d(Nis i) 1<ij<n
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CONNECTION WITH FUNCTIONAL CALCULUS AND PERTURBATION THEORY

Let f : R — R be a C!-function such that f’ is bounded.
Let fI11 : R2 — R be defined by

f)—=fly) -
£l (x,y) == x—y fx#y

, Xo,x1 € R.
f'(x), ifx=y 00

Then 11 is a bounded continuous function.
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CONNECTION WITH FUNCTIONAL CALCULUS AND PERTURBATION THEORY

Let f : R — R be a C!-function such that f’ is bounded.
Let fI11 : R2 — R be defined by

M) i 5 2

1 (x,y) = {

, Xo,x1 € R.
f'(x), ifx=y 00

Then 11 is a bounded continuous function.
Let A, D be selfadjoint operators with D € S?(H). Then
[TA+PAFEN(D) = F(A+ D) — f(A).

It is as if we had

f(A+ D) — f(A)
(A+D)— A

rA+D,A(f[1]) —
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AN APPLICATION TO OPERATOR LIPSCHITZ FUNCTIONS

Let A, B be self-adjoint on H.
If f is Lipschitz on R and B € SP(H), do we have

f(A+ B) — f(A) € SP(H)?
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e False when p=1 : Counter-example by Farforovskaya (1972).
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AN APPLICATION TO OPERATOR LIPSCHITZ FUNCTIONS

Let A, B be self-adjoint on H.
If f is Lipschitz on R and B € SP(H), do we have

f(A+ B) — f(A) € SP(H)?

e False when p=1 : Counter-example by Farforovskaya (1972).

e When p=1, V. Peller proved that the result is true when f
belongs to certain classes of functions (1985).
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AN APPLICATION TO OPERATOR LIPSCHITZ FUNCTIONS

Let A, B be self-adjoint on H.
If f is Lipschitz on R and B € SP(H), do we have

f(A+ B) — f(A) € SP(H)?

e False when p=1 : Counter-example by Farforovskaya (1972).

e When p=1, V. Peller proved that the result is true when f
belongs to certain classes of functions (1985).

THEOREM (D. Porapov, F. SUKOCHEV, 2011)

Let 1 < p < oo. There exists a constant c, > 0 such that for any

Lipschitz function f : R — C and for all A, B self-adjoints with
B € Sp(H),

IF(A+B) = f(A)llp < collfllLip, [|Bllp-
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PELLER’S THEOREM

Let A, B be normal operators on a separable Hilbert space H.
Let S'(H) be the space of trace class operators on H.
THEOREM (PELLER’S THEOREM )

For any ¢ € L>°(Aa X Ag), the following are equivalent :

(i) TAB(¢) restricts to a bounded map S*(H) — S*(H).
(ii) There exist a Hilbert space K and two functions

a € L>®(A\a; K) and b € L*°(\g; K) such that, for a.e. (s, t),

¢(s, t) = (a(s), b(t)) -
In this case, ||TAB(¢) : SY(H) — SY(H)|| = inf|a||||b]|.
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BILINEAR SCHUR MULTIPLIERS

e A three-dimensional matrix M = {mjs;} x j>1 with entries in
C is called a bilinear Schur multiplier onto SP if the following
action

T/\/l(A, B) = Z m,-kja,-kbkjE,-j,
ij,k>1
A ={aj}ij>1, B = {bjj}ij>1 € S2,, defines a bounded bilinear
mapping from S2 x S2 onto SP(£?).
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e If M is a Schur multiplier then M is bounded.



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS
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e A three-dimensional matrix M = {mjs;} x j>1 with entries in
C is called a bilinear Schur multiplier onto SP if the following
action

T/\/l(A, B) = Z m,-kja,-kbkjE,-j,
ij,k>1

A ={aj}ij>1, B = {bjj}ij>1 € S2,, defines a bounded bilinear
mapping from S2 x S2 onto SP(£?).

e If M is a Schur multiplier then M is bounded.

e If p =2, then this condition is sufficient on S2.
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TRIPLE OPERATOR INTEGRAL

Let H be a separable Hilbert space.

Let A, B, C be three normal operators on H.

Let Aa, Ag, Ac be scalar valued spectral measures for A, B, C.
Write $2 = S?(H) and let Bo(S? x S2,52) be the space of bilinear
maps from S2 x S? into S2.
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TRIPLE OPERATOR INTEGRAL

Let H be a separable Hilbert space.

Let A, B, C be three normal operators on H.

Let Aa, Ag, Ac be scalar valued spectral measures for A, B, C.
Write $2 = S?(H) and let Bo(S? x S2,52) be the space of bilinear
maps from S2 x S? into S2.

Let

[ABC [°(\4) ® L®(Ag) ® L®(A¢) — Ba(S? x §2,5%)
defined by
[MEC(F @ g @ h)| (X, Y) = F(A)Xg(B) YA(C).

for any f € L®(Aa), g € L®(\g), h € L®(\¢) and X, Y € S%(H).
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TRIPLE OPERATOR INTEGRAL

THEOREM

rAB:C uniquely extends to a w*—continuous isometry

rA,B,C . LOO()\A % )\B % )\C) SN 82(52 X 52752).

Such constructions go back (at least) to Pavlov (1969).
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TRIPLE OPERATOR INTEGRAL

THEOREM

rAB:C uniquely extends to a w*—continuous isometry

rA,B,C . LOO()\A % )\B % )\C) SN 82(52 X 52,52).

Such constructions go back (at least) to Pavlov (1969).
Operators of the form

AB.C(gp): 52 x 52 — §2
for ¢ € L®(Aa X Ag X A¢) are called triple operator integrals.

Alternative definitions of multiple operator integrals appear in
important papers by Peller and also by Potapov-Skripka-Sukochev.
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TRIPLE OPERATOR INT! AL

Let A, B, C be normal operators on H, and set N = dim(H).
Let

N N N
A:Z)\;P; and,B:Zquk and C:ZUJ'RJ'
i=1 k=1 j=1

be their spectral decompositions.
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TRIPLE OPERATOR INTEGRAL

Let A, B, C be normal operators on H, and set N = dim(H).
Let

N N N

A:Z)\;P; and,B:Zquk and C:ZUJ'RJ
i=1 k=1 j=1

be their spectral decompositions.

PROPOSITION
For any ¢ : C3 — C and any matrices X and Y,

[TAE:C(9)](X, Y) Z D(Ni, bk, V) PiXQy YR;, X € My
ij,k=1
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TRIPLE OPERATOR INTEGRAL

Let A, B, C be normal operators on H, and set N = dim(H).
Let

N N N
A:Z/\,-P,- and,B:Zquk and C:ZUJ'RJ

i=1 k=1 j=1
be their spectral decompositions.

PROPOSITION
For any ¢ : C3 — C and any matrices X and Y,

[TAE:C(9)](X, Y) Z D(Ni, bk, V) PiXQy YR;, X € My
ij,k=1

This shows that T5:C() behaves like the bilinear Schur multiplier
associated with the family

(A(Ais biks Vj))1<i kj<N-
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QUESTION

What are the functions ¢ for which I8:¢(¢) maps S2 x S?
into S' 7
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A FORMULA FOR BILINEAR SCHUR MULTIPLIERS 5,2\’, X Sl%l = 5,}1

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV,
TOMSKOVA)

Let M = {myj},; kj<n be a family of complex numbers. Consider
the bilinear Schur multiplication

T : S3 x S2 — Sk
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A FORMULA FOR BILINEAR SCHUR MULTIPLIERS S,"\’, X Sl%l = 5,}1

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV,
TOMSKOVA)

Let M = {myj},; kj<n be a family of complex numbers. Consider
the bilinear Schur multiplication

T : S3 x S2 — Sk

Then || Tp|| < 1 if and only if there exist a Hilbert space K and two
families {aix}1<; <y and {bj},<; y<y of elements of K such that

mixj = (aik, bjk) , 1, k,j>1

and

llai|| <1 and ||bj|l <1, i k,j>1.
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TRIPLE OPERATOR INTEGRALS MAPPING $2 X §2 — St

Let A, B, C be normal operators on a separable Hilbert space H.

MAIN THEOREM

For any ¢ € L>®(Aa X Ag X A¢), the following are equivalent :
(i) TAB.C(¢) is a bounded bilinear map S?(H) x S?(H) — S'(H).
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TRIPLE OPERATOR INTEGRALS MAPPING $2 X §2 — St

Let A, B, C be normal operators on a separable Hilbert space H.

MAIN THEOREM
For any ¢ € L>®(Aa X Ag X A¢), the following are equivalent :

(i) TAB:C(p) is a bounded bilinear map S?(H) x S?(H) — S'(H).
(ii) There exist a Hilbert space K and two functions

ae L®(M\axAg;K) and be L®(\g x A\¢c; K)
such that

o(r,s,t) = (a(r,s), b(s,t)) fora.e. (r,s,t).




TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

TRIPLE OPERATOR INTEGRALS MAPPING $2 X §2 — St

Let A, B, C be normal operators on a separable Hilbert space H.

MAIN THEOREM
For any ¢ € L>®(Aa X Ag X A¢), the following are equivalent :

(i) TAB:C(p) is a bounded bilinear map S?(H) x S?(H) — S'(H).
(ii) There exist a Hilbert space K and two functions

ae L®(M\axAg;K) and be L®(\g x A\¢c; K)
such that

o(r,s,t) = (a(r,s), b(s,t)) fora.e. (r,s,t).

In this case,

IF*5:(¢) : S*(H) x S*(H) — S*(H)|| = inf ||al|| ]




TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

TRIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Let f : R — R be a C%-function such that f” is bounded.
Let f[2: R3 — R be defined by

U (x,y) = (y,z) if x £ z

Fll(x,y, 2) = e 7 )
by, 2) aaxf[l](x,y)7 ifx=z

Then 12 is a bounded continuous function.



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

TRIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Let f : R — R be a C%-function such that f” is bounded.
Let f[2: R3 — R be defined by

U (x,y) = (y,z) if x £ z

Fll(x,y, 2) = e 7 )
by, 2) aaxf[l](x,y)7 ifx=z

Then 12 is a bounded continuous function.

Let A, D be selfadjoint operators with D € S?(H). Assume that A
is bounded, so that we can define separately

F(A+ D) — f(A) and %(f(A 4 D)) ecs.



TRIPLE OPERATOR INTEGRALS VALUED IN TRACE CLASS OPERATORS

TRIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Let f : R — R be a C%-function such that f” is bounded.
Let f[2: R3 — R be defined by

U (x,y) = (y,z) if x £ z
f[2] (X,y,Z) = 8 f.[lf_z {_. °

y), =z
Then 12 is a bounded continuous function.

Let A, D be selfadjoint operators with D € S?(H). Assume that A
is bounded, so that we can define separately

F(A+ D) — f(A) and %(f(A 4 D)) ecs.

PROPOSITION

F(A+D) ~ F(A) ~ S (F(A+tD))g = [PA+PAA(F)|(D, D).




TRIPLE OPERATOR IN GRALS VALUED IN TRACE CL OPERATORS

TRIPLE OPERATOR IN ALS AND PERTURBATION THEORY

Thank you for your attention !
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