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CONTINUOUS LINEAR AND BILINEAR SCHUR MULTIPLIERS AND APPLICATIONS TO PERTURBATION THEORY

Notations :

e For an operator A on a Hilbert space H, we denote by
o(A) C C its spectrum.

e B(X,Y) is the space of all continuous linear operators
T: X—=Y.

e An operator T € B({p,{q) will be identified with its infinite
matrix (tij)i,jzl-

e We denote by SP(H, K) the Schatten class of order p and by
SP their finite dimensional versions.
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MoOTIVATIONS

o Let A=diag(\1,A2,...,An) be a diagonal operator with \; € R
and let B be a selfadjoint operator on C". For any f € C!(R),

d

a(f(A +tB))|,_, = DB,
where D x B is the Schur (or Hadamard) product of D and B, and
D is the divided difference matrix
{“X):;(Aj)’ if )\i 7& )‘j

i—N

i) ifA =N

Dj =



LINEAR AND BILINEAR SCHUR ) IPLIERS AND APPLICATIONS TO PERTURBATION THEORY

MoOTIVATIONS

o Let f: x — x?, A, B selfadjoint operators on a Hilbert space H
with B € S2.
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MoOTIVATIONS

o Let f: x — x?, A, B selfadjoint operators on a Hilbert space H
with B € S2.
Then

f(A+B)—f(A) = AB+BA+B? and %(f(AthB))\t:O = AB+BA,
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MoOTIVATIONS

o Let f: x — x?, A, B selfadjoint operators on a Hilbert space H
with B € S2.
Then

f(A+B)—f(A) = AB+BA+B? and %(f(AthB))\t:O = AB+BA,
so that

f(A+ B) — f(A) — %(f(A+ tB))|,_, = B> € S%;
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LINEAR SCHUR MULTIPLIERS

DEFINITION

Let M = (mjj)i<;j be a family of complex numbers.
M is said to be a Schur multiplier on B({p,{q) (resp. on SP) if for
any matrix [ajj] € B({p,Lq) (resp. in SP),

Mx A= [m,-ja,-j]

belongs to B({p,{q) (resp. to SP).
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LINEAR SCHUR MULTIPLIERS

DEFINITION

Let M = (mjj)i<;j be a family of complex numbers.
M is said to be a Schur multiplier on B({p,{q) (resp. on SP) if for
any matrix [ajj] € B({p,Lq) (resp. in SP),

Mx A= [m,-ja,-j]

belongs to B({p,{q) (resp. to SP).

e There is a well-known characterization of Schur multipliers on
B(¢3) by Grothendieck.
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LINEAR SCHUR MULTIPLIERS

DEFINITION

Let M = (mjj)i<;j be a family of complex numbers.
M is said to be a Schur multiplier on B({p,{q) (resp. on SP) if for
any matrix [ajj] € B({p,Lq) (resp. in SP),

Mx A= [m,-ja,-j]

belongs to B({p,{q) (resp. to SP).

e There is a well-known characterization of Schur multipliers on
B(¢3) by Grothendieck.

e In 1977, Bennett gave a necessary and sufficient condition for
a family M to be a Schur multiplier on B(¢p, £4).
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LINEAR SCHUR MULTIPLIERS

DEFINITION

Let M = (mjj)i<;j be a family of complex numbers.
M is said to be a Schur multiplier on B({p,{q) (resp. on SP) if for
any matrix [ajj] € B({p,Lq) (resp. in SP),

Mx A= [m,-ja,-j]

belongs to B({p,{q) (resp. to SP).

e There is a well-known characterization of Schur multipliers on
B(¢3) by Grothendieck.

e In 1977, Bennett gave a necessary and sufficient condition for
a family M to be a Schur multiplier on B(¢p, £4).

e In 1985, V. Peller described more generally the Schur
multipliers in the continuous case : the Schur multipliers on

B(L»).
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LINEAR SCHUR MULTIPLIERS

Let (1, 11) and (22, p2) be two o—finite measure spaces and let
¢ € L®°(Q1 x Q).
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LINEAR SCHUR MULTIPLIERS

Let (1, 11) and (22, p2) be two o—finite measure spaces and let
¢ € L>°(Q x Q).
For f € LP(Q) and g € L9(£;), we denote by f ® g the mapping

fog:LP(Q1) — L9(Q) (1)
h — (hf)g.
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LINEAR SCHUR MULTIPLIERS

Let (1, 11) and (22, p2) be two o—finite measure spaces and let
¢ € L>°(Q x Q).
For f € LP(Q) and g € L9(£;), we denote by f ® g the mapping

fog:LP(Q1) — L9(Q) (1)
h — (h,f)g

Let
T, LP (1) @ L9(Q) — B(LP(1), LI(2))

be defined for any elementary tensor f @ g € LP'(Q1) ® L9(Q2) by

[To(F © &) (h) = ( o(s. )F(s)h(s)dpm (s )) g() € L9(),

for all h € LP(Qq).
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LINEAR SCHUR MULTIPLIERS

DEFINITION

We say that ¢ is a Schur multiplier on B(LP(S21), L9(22)) if there
exists C > 0 such that for any u € LP'(Q1) ® LI(Qy),

| To(u)ll B(Le(ar),La(2)) < Cllullv-

By the definition,

Ty|| is the norm of the Schur multiplier ¢.
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LINEAR SCHUR MULTIPLIERS

DEFINITION

We say that ¢ is a Schur multiplier on B(LP(S21), L9(22)) if there
exists C > 0 such that for any u € LP'(Q1) ® LI(Qy),

| To(u)ll B(Le(ar),La(2)) < Cllullv-

By the definition, || Ty|| is the norm of the Schur multiplier ¢.

Assume that 1 < p,q < +00. If ¢ is a Schur multiplier, then the
mapping

Ty 1P (1) ® L9(S) — B(LP(S), L9())

extends to w*-continuous mapping, still denoted by

Ty B(LP(Qu), L9(2)) — B(LP(21), L9(£22))
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LINEAR SCHUR MULTIPLIERS

Let ¢ € L>°(Q x 2). Denote by u, the mapping
Ug : Ll(Ql) — LOO(QQ).

S RCPLOETE
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LINEAR SCHUR MULTIPLIERS

Let ¢ € L>°(Q x 2). Denote by u, the mapping
Ug : Ll(Ql) — LOO(QQ).
For [ (s () din)

Q

THEOREM (C.)

Let1 < q < p < +oo. Then ¢ is Schur multiplier on
B(LP(£21), L9(Q22)) if and only if there exist a measure space (£2, i)
(a probability space when p # q) and operators

R € B(LX(0), LP(Q)), S € B(LI(Q), L=(22))

such that
us=SoloR,

where | : LP(Q2) — L9(Q) is the inclusion mapping.
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LINEAR SCHUR MULTIPLIERS

This property means that ug has the following factorization :

LY(Q) —2 L(S)

d Is

LP(Q)—— L9()
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LINEAR SCHUR MULTIPLIERS

This property means that ug has the following factorization :

LY(Q) —2 L(S)

d Is

LP(Q)—— L9()

~~ Notion of (p, q)-factorable operators L, 4(L(Q1), L>°(Q2)).
This is a dual space :

Lp.a(LX(Q1), L2(R2)) = (L1(R1) & L1())".
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LINEAR SCHUR MULTIPLIERS

COROLLARY

Let M = (mjj)ijen C C, C > 0 be a constant and let

1 < g < p<+oo. The following are equivalent :

(1) M is a Schur multiplier on B({p, £q) with norm less than C.

(11) There exist a measure space (a probability space when p # q)
(Q, 1) and two bounded sequences (x;); in LP(n) and (y;); in
L9 (1) such that

Vi,j € N,mjj = (xj,yi) and sup ||yillgsup x|, < C.
! J
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LINEAR SCHUR MULTIPLIERS

An application : Inclusion relationships among spaces of Schur
multipliers.
Let M(p, q) be the space of Schur multipliers on B(¢,, ¢g).
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LINEAR SCHUR MULTIPLIERS

An application : Inclusion relationships among spaces of Schur
multipliers.
Let M(p, q) be the space of Schur multipliers on B(¢,, ¢g).

THEOREM (C.)
(NI 1<r<qg<p<2(resp.2<p<q<r) then

M(q,r) £ M(p,p) (resp M(r,q) £ M(p, p)).
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LINEAR SCHUR MULTIPLIERS

An application : Inclusion relationships among spaces of Schur
multipliers.

Let M(p, q) be the space of Schur multipliers on B(¢,, ¢g).

THEOREM (C.)

(NI 1<r<qg<p<2(resp.2<p<q<r) then
M(q,r) &£ M(p,p) (resp M(r,q) & M(p, p)).

(if) We have M(q,q) C M(p,p) ifand only if 1l < p<q<2or
2<qg<p<+oo.
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BILINEAR SCHUR MULTIPLIERS

DEFINITION

Let M = {mjgj}i<ikj<n be a family of elements of C. We define a
bilinear Schur mapping by setting

TM(A B Z migja Ikbk_] ijs
1<ij,k<n

for any A = {ajj}i<ij<n, B = {bjj}1<ij<n € M.
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BILINEAR SCHUR MULTIPLIERS

ION THEORY

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV,
TOMSKOVA)

Let n € N. Let M = {mjg}7, ., be a family of complex numbers.
For any 1 < k < n, let M(k) be the (classical) matrix given by
M(k) = {mikj}ln,jzl' Then

| Th = S2x 82— Shll = sup || Tamky : M — M|
1<k<n




CONTINUOUS LINEAR AND BILINEAR SCHUR MULTIPLIERS AND APPLICATIONS TO PERTURBATION THEORY

BILINEAR SCHUR MULTIPLIERS

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV,
TOMSKOVA)

Let n € N. Let M = {mjg}7, ., be a family of complex numbers.
For any 1 < k < n, let M(k) be the (classical) matrix given by
M(k) = {mikj}ln,jzl' Then

| Th = S2x 82— Shll = sup || Tamky : M — M|
1<k<n

Then || Tpm|| < 1 if and only if there exist a Hilbert space K and two
families {auc}; < k< and {bxj};; < Of elements of K such that

mj; = (ajk, bj) , i, k,j>1

and
Ha,-kH <1 and kujH <1, ik, j>1.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Let Ay,..., A, be n normal operators on a separable Hilbert space
H and let, for any 1 </ < n, A\s, be a scalar valued spectral
measure for A;.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
DEFINITION

Let Ay,..., A, be n normal operators on a separable Hilbert space
H and let, for any 1 </ < n, A\s, be a scalar valued spectral
measure for A;.

It means that \4. is a finite measure on o(A;) such that, if EA is
the spectral measure of A; then, for any borelian subset

A C o(A;i), we have

(D) =0 < EA(A) = 0.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Let Ay,..., A, be n normal operators on a separable Hilbert space
H and let, for any 1 </ < n, A\s, be a scalar valued spectral
measure for A;.

It means that \4. is a finite measure on o(A;) such that, if EA is
the spectral measure of A; then, for any borelian subset

A C o(A;i), we have

(D) =0 < EA(A) = 0.
Let B, 1(S% x --- x §2 = S?) be the space of bounded

(n — 1)-linear maps from the product of (n — 1) copies of S?(H)
into S2(H).
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Let
FALAzeAn - [20(0 ) )@ - RL®(Na,) — Bao1(S%x---x 5% — §?)
be defined, for any f; € L*°(\4,) and for any Xi,..., X,—1 € S2, by

[rAl,Az,..A,An(fl @@ ) (X1, ..y Xn1) =
(A1) X1f(A2) -+ - fam1(An—1) Xn—1fn(An).
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Let
[AvA2An [ 20(N0) )@ - @L®(Aa,) — Bpo1 (5% x 5% = §?)

be defined, for any f; € L*°(\4,) and for any Xi,..., X,—1 € S2, by

[Pt @ )] (%, Xp 1) =
(A1) X1f(A2) -+ - fam1(An—1) Xn—1fn(An).

THEOREM (C., LE MERDY, SUKOCHEV)

FAvA2-An extends to a w*-continuous isometry

Az An 1 (T Aa, | — Ba-1(S® x -+ x §% = §?).
i=1
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Operators of the form
I_Al""’A”(gZ))

for ¢ € L™ ([];; Aa,) are called multiple operator integrals
mappings.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

DEFINITION

Operators of the form
I_Al""’A”(gZ))

for ¢ € L™ ([];; Aa,) are called multiple operator integrals
mappings.

e When H is finite dimensional, double operator integrals mappings
behave like linear Schur multipliers and triple operator integrals
behave like bilinear Schur multipliers.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
DEFINITION

Operators of the form
I_Al""’A”(gZ))

for ¢ € L™ ([];; Aa,) are called multiple operator integrals
mappings.

e When H is finite dimensional, double operator integrals mappings
behave like linear Schur multipliers and triple operator integrals
behave like bilinear Schur multipliers.

e The theory of double operator integrals started with
Birman-Solomyak, in a series of 3 papers published in 1966, 1967,
1973.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Let f € C1(R). The divided difference of first order flIl: R? — C is
defined by

f(xo)—f(x1) -
f[l](xo,x1) = 20*X1 ¥oifxo #x

, X0, X1 € R.
' (x0) if xo =x1 0
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Let f € C1(R). The divided difference of first order flIl: R? — C is

defined by
fo)=f0a) if
fl(xg, x1) := X I akale ) x0,x1 € R.
' (x0) if xo =x1

Let n > 2 and f € C"(R). The divided difference of n-th order
flnl. R 5 C is defined recursively by

f["*ll(xo,X2,...,X,,)—f["*l](xl,xz...,xn) .
f["] L X0 —x1 If X0 7& X1

(X0, X1y -y Xp) i= 1] _
817‘ (X1,X2,...,Xn) IfX():Xl

)

for all xg,...,x, € R.
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

THEOREM (C., LE MERDY, SKRIPKA)

Let A and K be selfadjoint operators on a separable Hilbert space
H with K € S?(H). Let n > 1 and f € C"(R). Assume either that
A is bounded or that for all 1 < i < n, f() js bounded. Let

@t ER = F(A+tK) — f(A) € S3(H).
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

THEOREM (C., LE MERDY, SKRIPKA)

Let A and K be selfadjoint operators on a separable Hilbert space
H with K € S?(H). Let n > 1 and f € C"(R). Assume either that
A is bounded or that for all 1 < i < n, f() js bounded. Let

@t ER = F(A+tK) — f(A) € S3(H).
(i) The function ¢ is n-times differentiable on R and for any
integer 1 < /¢ < nandanyteR,

1
ESO(@(t) _ [rA+tK,A+tK,...,A+tK(f[é])] (K,....K).
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

THEOREM
(i) We have

—1

3

F(A+K) — f(A) —
k=1

1
1w
0 (0)

— (rA+KA-AElh | (K, .. K).
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Peller's problems : Suppose that f € C%(R) is such that f" is
bounded. Let A be a self-adjoint (possibly unbounded) operator
and let K be a self-adjoint operator from S?. Is it true that

e S?
t=0

(A K, )= f(A+ K) — f(A) — %(f(A + tK))
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

Peller's problems : Suppose that f € C%(R) is such that f" is
bounded. Let A be a self-adjoint (possibly unbounded) operator
and let K be a self-adjoint operator from S?. Is it true that

(A K, )= f(A+ K) — f(A) — %(f(A + tK)) e S17

t=0

~+ Replace ['(A, K, f) by [[A+KAA(FRI)] (K, K).

20 /28



5 LINEAR AND BILINEAR J: D ND AP O PE DN THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

IF A and K are of the form A = @®,>1A, K = ®p>1 K, where
An, Kn € B(H,) with H, finite dimensional, then we have

(A K1) = ) (740 + o) = 1(An) = (A + )]y ).

n>1

N
0
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

IF A and K are of the form A = @®,>1A, K = ®p>1 K, where
An, Kn € B(H,) with H, finite dimensional, then we have

NAK,f)= @ <f(An + Kn) — f(An) — i(’r(An + tKn))‘t—O) )

dt
n>1

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV,
TOMSKOVA)

There exist an unbounded self-adjoint operator A and a self-adjoint
operator K € S?(¢2) such that

[(A K, f)_f(A+K)—f(A)—i( F(A+tK))|,_, ¢ S".




DN THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

LEMMA

There exist C > 0 and two sequences of operators
An, K, € B((C8"+4) such that HK,,H% < m, for all n > N, and

C

d
_ _ >
”f(An + Kn) f(An) dt(f(An + tKn))‘t:OHI — n|0g1/2(n)
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MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY

LEMMA

There exist C > 0 and two sequences of operators
An, K, € B(c8n+4) such that HK,,H% < ﬁ, for all n > N, and

d C
—(f(A, + tK >
(F(An + tK)]eolh > s

”f(An + Kn) - f(An) - dt

Define fo(x) = |x|.

THEOREM (DAVIES, 1988)

There exists a constant C > 0 such that for any n > 1, there exist
A,, B, € B(C?") self-adjoint such that B, # 0 and

HfO(An + Bn) - fO(An)”l > CloS””BnHl-
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Sl—BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

Can we characterize the functions ¢ for which [*5:¢(¢)
maps S? x S? into the trace class S'?
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51 AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

SI—BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C., LE MERDY, SUKOCHEV)

Let H be a separable Hilbert space, let A, B and C be normal
operators on ‘H and let ¢ € L°(Aa X A\g X A¢). The following are
equivalent :

(1) TABC(g) € Bo(S*(H) x S*(H), S*(H).
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51 AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

SI—BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C., LE MERDY, SUKOCHEV)

Let H be a separable Hilbert space, let A, B and C be normal

operators on ‘H and let ¢ € L°(Aa X A\g X A¢). The following are
equivalent :

(1) TABC(g) € Bo(S*(H) x S*(H), S*(H).
(11) There exist a separable Hilbert space H and two functions

ac LOO()\A X AB; H) and be LOO()\B X Ac; H)

such that
(1, t2, t3) = (a(t1, t2), b(t2, t3))
for a.e. (tl, to, t3) S O'(A) X O’(B) X O'(C)
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51 AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

SI—BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C., LE MERDY, SUKOCHEV)

Let H be a separable Hilbert space, let A, B and C be normal
operators on ‘H and let ¢ € L°(Aa X A\g X A¢). The following are
equivalent :

(1) TABC(g) € Bo(S*(H) x S*(H), S*(H).
(11) There exist a separable Hilbert space H and two functions

ac LOO()\A X AB; H) and be LOO()\B X Ac; H)

such that
B(t1, ta, t3) = (a(t1, t2), b(t2, t3))
for a.e. (tl, to, t3) S O'(A) X O’(B) X O'(C)
In this case,

ITAE:C(8): S2(H) x S*(H) — S* ()| = inf ||a]lco| bl oo

where the infimum runs over all pairs (a, b) satisfying (ii).
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MEASURABLE FACTORIZATION

e Let E, F be two Banach spaces, let I';(E, F) to be the space
T : E — F which factor through Hilbert space.
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MEASURABLE FACTORIZATION

e Let E, F be two Banach spaces, let I';(E, F) to be the space
T : E — F which factor through Hilbert space.

e Let (X, \) be a o-finite measure space and let G be a separable
Banach space. Let L3°(\; G*) be the space of functions
1 X — G* w*-measurable and essentially bounded.
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MEASURABLE FACTORIZATION

e Let E, F be two Banach spaces, let I';(E, F) to be the space
T : E — F which factor through Hilbert space.

e Let (X, \) be a o-finite measure space and let G be a separable
Banach space. Let L3°(\; G*) be the space of functions
1 X — G* w*-measurable and essentially bounded.

THEOREM (C., LE MERDY, SUKOCHEV)

Let (2, ;1) be a separable measure space and let E, F be two
separable Banach spaces. Let ¢ € Ly (Q;T»(E, F*)). Then there
exist a separable Hilbert space H and two functions

aelX(QB(E,H) and  BelP(QB(F,H))
such that ||a||eo|Bllco < ||@lleo and for any (x,y) € E X F,

([(DI(x),y) = ([(D)](x), [B()(y)),  foraeteQ. (2)
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MEASURABLE FACTORIZATION

Connection with the theorem :

Regard ¢ € L°(Aa X Ag X A¢) as an element of
Le°(Ag; L(Aa X A¢) and associate

b€ L (Mg B(L'(Ma); L(Ac)))
by
[L()](F) = o(r,s,-)f(r) da(r)

o(A)
for any f € L1(\a).

[
o5
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MEASURABLE FACTORIZATION

Connection with the theorem :

Regard ¢ € L°(Aa X Ag X A¢) as an element of
Le°(Ag; L(Aa X A¢) and associate

b€ L (Mg B(L'(Ma); L(Ac)))
by
[L()](F) = o(r,s,-)f(r) da(r)

o(A)
for any f € L1(\a).

THEOREM (SECOND FORMULATION)

The following are equivalent :
(1) TABC(9) € Bo(S*(H) x S*(H), S'(H).
(11) The function 1) associated to ¢ belongs to

L°(Ag; T2 (L (M) L=(Ac)))-
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COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C.)

Let H be a separable Hilbert space, A, B, C be normal operators on
H and let ¢ € L®(Aa X A\g X \¢). The following are equivalent :

(1) TAB:C(¢) extends to a completely bounded mapping

FABC(g) : S°(H) © S¥(H) — S®(H).




CONTINUOUS LINEAR AND BILINEAR SCHUR MULTIPLIERS AND APPLICATIONS TO PERTURBATION THEORY

51 AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS
COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C.)

Let H be a separable Hilbert space, A, B, C be normal operators on
H and let ¢ € L®(Aa X A\g X \¢). The following are equivalent :

(1) TAB:C(¢) extends to a completely bounded mapping

h
PABC(5) : S2(H) D S¥(H) = S(H).
(11) There exist a separable Hilbert space H,
a€ L>®\a; H),be LX(Ag; B(H)) and ¢ € L*°(\¢; H) such
that
o(t1, t2, t3) = ([b(t2)](a(t1)), c(ts))
for a.e. (tl, to, t3) S J(A) X J(B) X U(C)

In this case,

[28:<(8)]| = inf allo 1Bllscli e 3)
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COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

Thank you for your attention !
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