CONTINUOUS LINEAR AND BILINEAR SCHUR MULTIPLIERS AND APPLICATIONS TO PERTURBATION THEORY

Clément Coine Directeur de thèse : Christian Le Merdy

30 Juin 2017

RECION BOURGOGNE FRANCHE COMTE < 🗇 > < 🖻

- **2** LINEAR SCHUR MULTIPLIERS
- **3** BILINEAR SCHUR MULTIPLIERS
- MULTIPLE OPERATOR INTEGRALS AND PERTURBATION THEORY
- $5 S^1$ and complete boundedness of triple operator integrals

Notations :

- For an operator A on a Hilbert space H, we denote by $\sigma(A) \subset \mathbb{C}$ its spectrum.
- $\mathcal{B}(X, Y)$ is the space of all continuous linear operators

$$T: X \to Y.$$

- An operator T ∈ B(ℓ_p, ℓ_q) will be identified with its infinite matrix (t_{ij})_{i,j≥1}.
- We denote by $S^{p}(H, K)$ the Schatten class of order p and by S_{n}^{p} their finite dimensional versions.

• Let $A = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ be a diagonal operator with $\lambda_i \in \mathbb{R}$ and let B be a selfadjoint operator on \mathbb{C}^n . For any $f \in C^1(\mathbb{R})$,

$$\frac{d}{dt}(f(A+tB))\big|_{t=0}=D*B,$$

where D * B is the Schur (or Hadamard) product of D and B, and D is the divided difference matrix

$$D_{ij} := \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}, & \text{if } \lambda_i \neq \lambda_j \\ f'(\lambda_i) & \text{if } \lambda_i = \lambda_j \end{cases}$$

イロト イロト イヨト イヨト 三日

3/28

• Let $f: x \mapsto x^2$, A, B selfadjoint operators on a Hilbert space \mathcal{H} with $B \in S^2$.

• Let $f: x \mapsto x^2$, A, B selfadjoint operators on a Hilbert space $\mathcal H$ with $B \in S^2$. Then

$$f(A+B)-f(A) = AB+BA+B^2$$
 and $\frac{d}{dt}(f(A+tB))\big|_{t=0} = AB+BA$,

• Let $f: x \mapsto x^2$, A, B selfadjoint operators on a Hilbert space $\mathcal H$ with $B \in S^2$. Then

$$f(A+B)-f(A) = AB+BA+B^2$$
 and $\frac{d}{dt}(f(A+tB))\big|_{t=0} = AB+BA$,

so that

$$f(A+B)-f(A)-rac{d}{dt}(f(A+tB))\big|_{t=0}=B^2\in S^1;$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

4/28

Let $M = (m_{ij})_{1 \le i,j}$ be a family of complex numbers. M is said to be a Schur multiplier on $\mathcal{B}(\ell_p, \ell_q)$ (resp. on \mathcal{S}^p) if for any matrix $[a_{ij}] \in \mathcal{B}(\ell_p, \ell_q)$ (resp. in \mathcal{S}^p),

$$M * A = [m_{ij}a_{ij}]$$

belongs to $\mathcal{B}(\ell_p, \ell_q)$ (resp. to S^p).

Let $M = (m_{ij})_{1 \le i,j}$ be a family of complex numbers. M is said to be a Schur multiplier on $\mathcal{B}(\ell_p, \ell_q)$ (resp. on \mathcal{S}^p) if for any matrix $[a_{ij}] \in \mathcal{B}(\ell_p, \ell_q)$ (resp. in \mathcal{S}^p),

$$M * A = [m_{ij}a_{ij}]$$

belongs to $\mathcal{B}(\ell_p, \ell_q)$ (resp. to S^p).

 There is a well-known characterization of Schur multipliers on *B*(*l*₂) by Grothendieck.

Let $M = (m_{ij})_{1 \le i,j}$ be a family of complex numbers. M is said to be a Schur multiplier on $\mathcal{B}(\ell_p, \ell_q)$ (resp. on \mathcal{S}^p) if for any matrix $[a_{ij}] \in \mathcal{B}(\ell_p, \ell_q)$ (resp. in \mathcal{S}^p),

$$M * A = [m_{ij}a_{ij}]$$

belongs to $\mathcal{B}(\ell_p, \ell_q)$ (resp. to S^p).

- There is a well-known characterization of Schur multipliers on *B*(*l*₂) by Grothendieck.
- In 1977, Bennett gave a necessary and sufficient condition for a family M to be a Schur multiplier on B(ℓ_p, ℓ_q).

Let $M = (m_{ij})_{1 \le i,j}$ be a family of complex numbers. M is said to be a Schur multiplier on $\mathcal{B}(\ell_p, \ell_q)$ (resp. on \mathcal{S}^p) if for any matrix $[a_{ij}] \in \mathcal{B}(\ell_p, \ell_q)$ (resp. in \mathcal{S}^p),

$$M * A = [m_{ij}a_{ij}]$$

belongs to $\mathcal{B}(\ell_p, \ell_q)$ (resp. to S^p).

- There is a well-known characterization of Schur multipliers on *B*(*l*₂) by Grothendieck.
- In 1977, Bennett gave a necessary and sufficient condition for a family M to be a Schur multiplier on B(ℓ_p, ℓ_q).
- In 1985, V. Peller described more generally the Schur multipliers in the continuous case : the Schur multipliers on B(L₂).

Let (Ω_1, μ_1) and (Ω_2, μ_2) be two σ -finite measure spaces and let $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$.

Let (Ω_1, μ_1) and (Ω_2, μ_2) be two σ -finite measure spaces and let $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$. For $f \in L^{p'}(\Omega_1)$ and $g \in L^q(\Omega_2)$, we denote by $f \otimes g$ the mapping

$$\begin{array}{cccc} f \otimes g : L^p(\Omega_1) & \longrightarrow & L^q(\Omega_2) \\ & h & \longmapsto & \langle h, f \rangle g. \end{array}$$
 (1)

Let (Ω_1, μ_1) and (Ω_2, μ_2) be two σ -finite measure spaces and let $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$. For $f \in L^{p'}(\Omega_1)$ and $g \in L^q(\Omega_2)$, we denote by $f \otimes g$ the mapping

$$\begin{array}{cccc} f \otimes g : L^p(\Omega_1) & \longrightarrow & L^q(\Omega_2) \\ & h & \longmapsto & \langle h, f \rangle \, g. \end{array}$$
 (1)

Let

$$\mathcal{T}_{\phi}: L^{p'}(\Omega_1)\otimes L^q(\Omega_2)
ightarrow \mathcal{B}(L^p(\Omega_1), L^q(\Omega_2))$$

be defined for any elementary tensor $f\otimes g\in L^{p'}(\Omega_1)\otimes L^q(\Omega_2)$ by

$$[T_{\phi}(f\otimes g)](h) = \left(\int_{\Omega_1} \phi(s,\cdot)f(s)h(s)\mathsf{d}\mu_1(s)\right)g(\cdot) \in L^q(\Omega_2),$$

for all $h \in L^p(\Omega_1)$.

We say that ϕ is a Schur multiplier on $\mathcal{B}(L^{p}(\Omega_{1}), L^{q}(\Omega_{2}))$ if there exists $C \geq 0$ such that for any $u \in L^{p'}(\Omega_{1}) \otimes L^{q}(\Omega_{2})$,

 $\|T_{\phi}(u)\|_{\mathcal{B}(L^{p}(\Omega_{1}),L^{q}(\Omega_{2}))} \leq C\|u\|_{\vee}.$

By the definition, $||T_{\phi}||$ is the norm of the Schur multiplier ϕ .

We say that ϕ is a Schur multiplier on $\mathcal{B}(L^{p}(\Omega_{1}), L^{q}(\Omega_{2}))$ if there exists $C \geq 0$ such that for any $u \in L^{p'}(\Omega_{1}) \otimes L^{q}(\Omega_{2})$,

$$\|T_{\phi}(u)\|_{\mathcal{B}(L^p(\Omega_1),L^q(\Omega_2))}\leq C\|u\|_{\vee}.$$

By the definition, $||T_{\phi}||$ is the norm of the Schur multiplier ϕ .

Assume that $1 < p, q < +\infty.$ If ϕ is a Schur multiplier, then the mapping

$$T_{\phi}: L^{p'}(\Omega_1) \overset{\vee}{\otimes} L^q(\Omega_2) \to \mathcal{B}(L^p(\Omega_1), L^q(\Omega_2))$$

extends to w^* -continuous mapping, still denoted by

$$T_{\phi}: \mathcal{B}(L^{p}(\Omega_{1}), L^{q}(\Omega_{2})) \rightarrow \mathcal{B}(L^{p}(\Omega_{1}), L^{q}(\Omega_{2}))$$

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Linear Schur multipliers

Let $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$. Denote by u_{ϕ} the mapping

$$egin{array}{rcl} u_\phi: & L^1(\Omega_1) & \longrightarrow & L^\infty(\Omega_2). \ & f & \longmapsto & \int_{\Omega_1} \phi(s,\cdot) f(s) \ \mathsf{d} \mu_1(s) \end{array}$$

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Linear Schur multipliers

Let $\phi \in L^{\infty}(\Omega_1 \times \Omega_2)$. Denote by u_{ϕ} the mapping

$$egin{array}{rcl} u_\phi : & L^1(\Omega_1) & \longrightarrow & L^\infty(\Omega_2). \ & f & \longmapsto & \int_{\Omega_1} \phi(s,\cdot) f(s) \; \mathsf{d} \mu_1(s) \end{array}$$

THEOREM (C.)

Let $1 \leq q \leq p \leq +\infty$. Then ϕ is Schur multiplier on $\mathcal{B}(L^p(\Omega_1), L^q(\Omega_2))$ if and only if there exist a measure space (Ω, μ) (a probability space when $p \neq q$) and operators

 $R \in \mathcal{B}(L^1(\Omega_1), L^p(\Omega)), S \in \mathcal{B}(L^q(\Omega), L^\infty(\Omega_2))$

such that

$$u_{\phi} = S \circ I \circ R,$$

where $I: L^{p}(\Omega) \to L^{q}(\Omega)$ is the inclusion mapping.

8/28

This property means that u_{ϕ} has the following factorization :

$$L^{1}(\Omega_{1}) \xrightarrow{u_{\phi}} L^{\infty}(\Omega_{2})$$

$$R \downarrow \qquad \qquad \uparrow s$$

$$L^{p}(\Omega) \xrightarrow{ I } L^{q}(\Omega)$$

This property means that u_{ϕ} has the following factorization :

$$L^{1}(\Omega_{1}) \xrightarrow{u_{\phi}} L^{\infty}(\Omega_{2})$$

$$R \downarrow \qquad \uparrow s$$

$$L^{p}(\Omega) \xrightarrow{l} L^{q}(\Omega)$$

 \rightsquigarrow Notion of (p, q)-factorable operators $L_{p,q}(L^1(\Omega_1), L^{\infty}(\Omega_2))$. This is a dual space :

$$L_{p,q}(L^1(\Omega_1),L^\infty(\Omega_2))=(L^1(\Omega_1)\overset{\gamma_{p,q}}{\otimes}L^1(\Omega_2))^*.$$

COROLLARY

- Let $M = (m_{ij})_{i,j \in \mathbb{N}} \subset \mathbb{C}$, $C \ge 0$ be a constant and let $1 \le q \le p \le +\infty$. The following are equivalent :
- (1) *M* is a Schur multiplier on $\mathcal{B}(\ell_p, \ell_q)$ with norm less than *C*.
- (11) There exist a measure space (a probability space when $p \neq q$) (Ω, μ) and two bounded sequences $(x_j)_j$ in $L^p(\mu)$ and $(y_i)_i$ in $L^{q'}(\mu)$ such that

$$\forall i,j \in \mathbb{N}, m_{ij} = \langle x_j, y_i \rangle$$
 and $\sup_i \|y_i\|_{q'} \sup_j \|x_j\|_p \leq C.$

An application : Inclusion relationships among spaces of Schur multipliers. Let $\mathcal{M}(p,q)$ be the space of Schur multipliers on $\mathcal{B}(\ell_p, \ell_q)$. An application : Inclusion relationships among spaces of Schur multipliers.

Let $\mathcal{M}(p,q)$ be the space of Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$.

THEOREM (C.) (i) If $1 \le r \le q (resp. <math>2 \le p < q \le r$), then $\mathcal{M}(q,r) \nsubseteq \mathcal{M}(p,p)$ (resp $\mathcal{M}(r,q) \nsubseteq \mathcal{M}(p,p)$). **An application :** Inclusion relationships among spaces of Schur multipliers.

Let $\mathcal{M}(p,q)$ be the space of Schur multipliers on $\mathcal{B}(\ell_p,\ell_q)$.

THEOREM (C.) (i) If $1 \le r \le q (resp. <math>2 \le p < q \le r$), then $\mathcal{M}(q,r) \nsubseteq \mathcal{M}(p,p)$ (resp $\mathcal{M}(r,q) \nsubseteq \mathcal{M}(p,p)$). (ii) We have $\mathcal{M}(q,q) \subset \mathcal{M}(p,p)$ if and only if $1 \le p \le q \le 2$ or $2 \le q \le p \le +\infty$.

Let $M = \{m_{ikj}\}_{1 \le i,k,j \le n}$ be a family of elements of \mathbb{C} . We define a bilinear Schur mapping by setting

$$T_M(A,B) := \sum_{1 \le i,j,k \le n} m_{ikj} a_{ik} b_{kj} E_{ij},$$

for any $A = \{a_{ij}\}_{1 \le i,j \le n}, B = \{b_{ij}\}_{1 \le i,j \le n} \in M_n$.

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV, TOMSKOVA)

Let $n \in \mathbb{N}$. Let $M = \{m_{ikj}\}_{i,k,j=1}^{n}$ be a family of complex numbers. For any $1 \le k \le n$, let M(k) be the (classical) matrix given by $M(k) = \{m_{ikj}\}_{i,j=1}^{n}$. Then

$$\left\|T_{M}: \mathcal{S}_{n}^{2} \times \mathcal{S}_{n}^{2} \to \mathcal{S}_{n}^{1}\right\| = \sup_{1 \leq k \leq n} \left\|T_{M(k)}: M_{n} \to M_{n}\right\|$$

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV, TOMSKOVA)

Let $n \in \mathbb{N}$. Let $M = \{m_{ikj}\}_{i,k,j=1}^{n}$ be a family of complex numbers. For any $1 \le k \le n$, let M(k) be the (classical) matrix given by $M(k) = \{m_{ikj}\}_{i,j=1}^{n}$. Then

$$\left\| T_{M}: \mathcal{S}_{n}^{2} \times \mathcal{S}_{n}^{2} \to \mathcal{S}_{n}^{1} \right\| = \sup_{1 \leq k \leq n} \left\| T_{M(k)}: M_{n} \to M_{n} \right\|.$$

Then $||T_M|| < 1$ if and only if there exist a Hilbert space K and two families $\{a_{ik}\}_{1 \le i,k \le N}$ and $\{b_{kj}\}_{1 \le j,k \le N}$ of elements of K such that

$$m_{ikj} = \langle a_{ik}, b_{kj} \rangle, \quad i, k, j \ge 1$$

and

$$\|a_{ik}\| < 1$$
 and $\|b_{kj}\| < 1, i, k, j \ge 1.$

Let A_1, \ldots, A_n be *n* normal operators on a separable Hilbert space \mathcal{H} and let, for any $1 \leq i \leq n$, λ_{A_i} be a scalar valued spectral measure for A_i .

Let A_1, \ldots, A_n be *n* normal operators on a separable Hilbert space \mathcal{H} and let, for any $1 \leq i \leq n$, λ_{A_i} be a scalar valued spectral measure for A_i .

It means that λ_{A_i} is a finite measure on $\sigma(A_i)$ such that, if E^{A_i} is the spectral measure of A_i then, for any borelian subset $\Delta \subset \sigma(A_i)$, we have

$$\lambda_{A_i}(\Delta) = 0 \iff E^{A_i}(\Delta) = 0.$$

Let A_1, \ldots, A_n be *n* normal operators on a separable Hilbert space \mathcal{H} and let, for any $1 \leq i \leq n$, λ_{A_i} be a scalar valued spectral measure for A_i .

It means that λ_{A_i} is a finite measure on $\sigma(A_i)$ such that, if E^{A_i} is the spectral measure of A_i then, for any borelian subset $\Delta \subset \sigma(A_i)$, we have

$$\lambda_{A_i}(\Delta) = 0 \iff E^{A_i}(\Delta) = 0.$$

Let $\mathcal{B}_{n-1}(S^2 \times \cdots \times S^2 \to S^2)$ be the space of bounded (n-1)-linear maps from the product of (n-1) copies of $S^2(\mathcal{H})$ into $S^2(\mathcal{H})$.

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Multiple operator integrals and perturbation theory Definition

Let

$$\Gamma^{A_1,A_2,...,A_n}: L^{\infty}(\lambda_{A_1}) \otimes \cdots \otimes L^{\infty}(\lambda_{A_n}) \longrightarrow \mathcal{B}_{n-1}(S^2 \times \cdots \times S^2 \to S^2)$$

be defined, for any $f_i \in L^\infty(\lambda_{\mathcal{A}_i})$ and for any $X_1,\ldots,X_{n-1}\in S^2$, by

$$\begin{bmatrix} \Gamma^{A_1,A_2,...,A_n}(f_1 \otimes \cdots \otimes f_n) \end{bmatrix} (X_1,\ldots,X_{n-1}) = f_1(A_1) X_1 f_2(A_2) \cdots f_{n-1}(A_{n-1}) X_{n-1} f_n(A_n).$$

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Multiple operator integrals and perturbation theory Definition

Let

$$\Gamma^{A_1,A_2,...,A_n}: L^\infty(\lambda_{A_1}) \otimes \cdots \otimes L^\infty(\lambda_{A_n}) \longrightarrow \mathcal{B}_{n-1}(S^2 imes \cdots imes S^2 o S^2)$$

be defined, for any $f_i\in L^\infty(\lambda_{\mathcal{A}_i})$ and for any $X_1,\ldots,X_{n-1}\in S^2$, by

$$\begin{bmatrix} \Gamma^{A_1,A_2,...,A_n}(f_1 \otimes \cdots \otimes f_n) \end{bmatrix} (X_1,\ldots,X_{n-1}) = f_1(A_1) X_1 f_2(A_2) \cdots f_{n-1}(A_{n-1}) X_{n-1} f_n(A_n).$$

THEOREM (C., LE MERDY, SUKOCHEV)

 $\Gamma^{A_1,A_2,...,A_n}$ extends to a w^{*}-continuous isometry

$$\Gamma^{A_1,A_2,\ldots,A_n}: L^{\infty}\left(\prod_{i=1}^n \lambda_{A_i}\right) \longrightarrow \mathcal{B}_{n-1}(S^2 \times \cdots \times S^2 \to S^2).$$

Operators of the form

$$\Gamma^{A_1,\ldots,A_n}(\phi)$$

for $\phi \in L^{\infty}(\prod_{i=1}^{n} \lambda_{A_i})$ are called *multiple operator integrals* mappings.

Operators of the form

$$-A_1,\ldots,A_n(\phi)$$

for $\phi \in L^{\infty}(\prod_{i=1}^{n} \lambda_{A_i})$ are called *multiple operator integrals* mappings.

• When \mathcal{H} is finite dimensional, double operator integrals mappings behave like linear Schur multipliers and triple operator integrals behave like bilinear Schur multipliers.

Operators of the form

$$-A_1,\ldots,A_n(\phi)$$

for $\phi \in L^{\infty}(\prod_{i=1}^{n} \lambda_{A_i})$ are called *multiple operator integrals* mappings.

• When \mathcal{H} is finite dimensional, double operator integrals mappings behave like linear Schur multipliers and triple operator integrals behave like bilinear Schur multipliers.

• The theory of double operator integrals started with Birman-Solomyak, in a series of 3 papers published in 1966, 1967, 1973. Let $f \in C^1(\mathbb{R})$. The divided difference of first order $f^{[1]} \colon \mathbb{R}^2 \to \mathbb{C}$ is defined by

$$f^{[1]}(x_0, x_1) := \begin{cases} \frac{f(x_0) - f(x_1)}{x_0 - x_1} & \text{if } x_0 \neq x_1 \\ f'(x_0) & \text{if } x_0 = x_1 \end{cases}, \qquad x_0, x_1 \in \mathbb{R}.$$

Let $f \in C^1(\mathbb{R})$. The divided difference of first order $f^{[1]} \colon \mathbb{R}^2 \to \mathbb{C}$ is defined by

$$f^{[1]}(x_0, x_1) := \begin{cases} \frac{f(x_0) - f(x_1)}{x_0 - x_1} & \text{if } x_0 \neq x_1 \\ f'(x_0) & \text{if } x_0 = x_1 \end{cases}, \qquad x_0, x_1 \in \mathbb{R}.$$

Let $n \ge 2$ and $f \in C^n(\mathbb{R})$. The divided difference of n-th order $f^{[n]} \colon \mathbb{R}^{n+1} \to \mathbb{C}$ is defined recursively by

$$f^{[n]}(x_0, x_1, \dots, x_n) := \begin{cases} \frac{f^{[n-1]}(x_0, x_2, \dots, x_n) - f^{[n-1]}(x_1, x_2, \dots, x_n)}{x_0 - x_1} & \text{if } x_0 \neq x_1 \\ \partial_1 f^{[n-1]}(x_1, x_2, \dots, x_n) & \text{if } x_0 = x_1 \end{cases},$$

for all $x_0, \ldots, x_n \in \mathbb{R}$.

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

THEOREM (C., LE MERDY, SKRIPKA)

Let A and K be selfadjoint operators on a separable Hilbert space \mathcal{H} with $K \in S^2(\mathcal{H})$. Let $n \geq 1$ and $f \in C^n(\mathbb{R})$. Assume either that A is bounded or that for all $1 \leq i \leq n$, $f^{(i)}$ is bounded. Let

$$\varphi: t \in \mathbb{R} \mapsto f(A + tK) - f(A) \in S^{2}(\mathcal{H}).$$

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

THEOREM (C., LE MERDY, SKRIPKA)

Let A and K be selfadjoint operators on a separable Hilbert space \mathcal{H} with $K \in S^2(\mathcal{H})$. Let $n \ge 1$ and $f \in C^n(\mathbb{R})$. Assume either that A is bounded or that for all $1 \le i \le n$, $f^{(i)}$ is bounded. Let

$$\varphi: t \in \mathbb{R} \mapsto f(A + tK) - f(A) \in S^{2}(\mathcal{H}).$$

(i) The function φ is n-times differentiable on \mathbb{R} and for any integer $1 \leq \ell \leq n$ and any $t \in \mathbb{R}$,

$$\frac{1}{\ell!}\varphi^{(\ell)}(t) = \left[\Gamma^{A+tK,A+tK,\ldots,A+tK}(f^{[\ell]})\right](K,\ldots,K).$$

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

${\rm Theorem}$

(ii) We have

$$f(A+K)-f(A)-\sum_{k=1}^{n-1}\frac{1}{k!}\varphi^{(k)}(0)$$
$$=\left[\Gamma^{A+K,A,\ldots,A}(f^{[n]})\right](K,\ldots,K).$$

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

Peller's problems : Suppose that $f \in C^2(\mathbb{R})$ is such that f'' is bounded. Let A be a self-adjoint (possibly unbounded) operator and let K be a self-adjoint operator from S^2 . Is it true that

$$\Gamma(A, K, f) := f(A + K) - f(A) - \frac{d}{dt} \Big(f(A + tK) \Big) \Big|_{t=0} \in \mathcal{S}^{1}?$$

イロト イポト イヨト イヨト

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

Peller's problems : Suppose that $f \in C^2(\mathbb{R})$ is such that f'' is bounded. Let A be a self-adjoint (possibly unbounded) operator and let K be a self-adjoint operator from S^2 . Is it true that

$$\Gamma(A, K, f) := f(A + K) - f(A) - \frac{d}{dt} \Big(f(A + tK) \Big) \Big|_{t=0} \in \mathcal{S}^{1}?$$

 \rightsquigarrow Replace $\Gamma(A, K, f)$ by $[\Gamma^{A+K,A,A}(f^{[2]})](K, K)$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Multiple operator integrals and perturbation theory Multiple operator integrals and perturbation theory

IF A and K are of the form $A = \bigoplus_{n \ge 1} A_n$, $K = \bigoplus_{n \ge 1} K_n$ where $A_n, K_n \in \mathcal{B}(\mathcal{H}_n)$ with \mathcal{H}_n finite dimensional, then we have

$$\Gamma(A, K, f) = \bigoplus_{n \ge 1} \left(f(A_n + K_n) - f(A_n) - \frac{d}{dt} (f(A_n + tK_n)) \Big|_{t=0} \right)$$

Continuous linear and bilinear Schur multipliers and applications to perturbation theory Multiple operator integrals and perturbation theory Multiple operator integrals and perturbation theory

IF A and K are of the form $A = \bigoplus_{n \ge 1} A_n$, $K = \bigoplus_{n \ge 1} K_n$ where $A_n, K_n \in \mathcal{B}(\mathcal{H}_n)$ with \mathcal{H}_n finite dimensional, then we have

$$\Gamma(A, K, f) = \bigoplus_{n \ge 1} \left(f(A_n + K_n) - f(A_n) - \frac{d}{dt} (f(A_n + tK_n)) \Big|_{t=0} \right).$$

THEOREM (C., LE MERDY, POTAPOV, SUKOCHEV, TOMSKOVA)

There exist an unbounded self-adjoint operator A and a self-adjoint operator $K \in S^2(\ell^2)$ such that

$$\Gamma(A, K, f) = f(A + K) - f(A) - \frac{d}{dt}(f(A + tK))\big|_{t=0} \notin S^1.$$

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

LEMMA

There exist C > 0 and two sequences of operators $A_n, K_n \in B(\mathbb{C}^{8n+4})$ such that $||K_n||_2^2 \leq \frac{1}{n \log^{3/2} n}$, for all $n \geq N$, and

$$\|f(A_n + K_n) - f(A_n) - \frac{d}{dt}(f(A_n + tK_n))\|_{t=0}\|_1 \ge \frac{C}{n \log^{1/2}(n)}.$$

Multiple operator integrals and perturbation theory

Multiple operator integrals and perturbation theory

Lemma

There exist C > 0 and two sequences of operators $A_n, K_n \in B(\mathbb{C}^{8n+4})$ such that $\|K_n\|_2^2 \leq \frac{1}{n \log^{3/2} n}$, for all $n \geq N$, and

$$\|f(A_n + K_n) - f(A_n) - \frac{d}{dt}(f(A_n + tK_n))\|_{t=0}\|_1 \ge \frac{C}{n \log^{1/2}(n)}.$$

Define $f_0(x) = |x|$.

THEOREM (DAVIES, 1988)

There exists a constant C > 0 such that for any $n \ge 1$, there exist $A_n, B_n \in \mathcal{B}(\mathbb{C}^{2n})$ self-adjoint such that $B_n \ne 0$ and

 $||f_0(A_n + B_n) - f_0(A_n)||_1 \ge C \log n ||B_n||_1.$

 S^1 and complete boundedness of triple operator integrals

 S^1 -boundedness of triple operator integrals

Can we characterize the functions ϕ for which $\Gamma^{A,B,C}(\phi)$ maps $S^2 \times S^2$ into the trace class S^1 ?

- S¹ AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS
 - S^1 -boundedness of triple operator integrals

THEOREM (C., LE MERDY, SUKOCHEV)

Let \mathcal{H} be a separable Hilbert space, let A, B and C be normal operators on \mathcal{H} and let $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$. The following are equivalent :

(I) $\Gamma^{A,B,C}(\phi) \in B_2(S^2(\mathcal{H}) \times S^2(\mathcal{H}), S^1(\mathcal{H})).$

- S¹ AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS
 - S^1 -boundedness of triple operator integrals

THEOREM (C., LE MERDY, SUKOCHEV)

Let \mathcal{H} be a separable Hilbert space, let A, B and C be normal operators on \mathcal{H} and let $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$. The following are equivalent :

- (I) $\Gamma^{A,B,C}(\phi) \in B_2(S^2(\mathcal{H}) \times S^2(\mathcal{H}), S^1(\mathcal{H})).$
- (11) There exist a separable Hilbert space H and two functions

$$a \in L^{\infty}(\lambda_A \times \lambda_B; H)$$
 and $b \in L^{\infty}(\lambda_B \times \lambda_C; H)$

such that

$$\phi(t_1,t_2,t_3) = \langle \mathsf{a}(t_1,t_2),\mathsf{b}(t_2,t_3) \rangle$$

for a.e. $(t_1, t_2, t_3) \in \sigma(A) \times \sigma(B) \times \sigma(C)$.

うへで | / 28

- S^1 and complete boundedness of triple operator integrals
 - S^1 -boundedness of triple operator integrals

THEOREM (C., LE MERDY, SUKOCHEV)

Let \mathcal{H} be a separable Hilbert space, let A, B and C be normal operators on \mathcal{H} and let $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$. The following are equivalent :

- (I) $\Gamma^{A,B,C}(\phi) \in B_2(S^2(\mathcal{H}) \times S^2(\mathcal{H}), S^1(\mathcal{H})).$
- (II) There exist a separable Hilbert space H and two functions

$$a \in L^{\infty}(\lambda_A \times \lambda_B; H)$$
 and $b \in L^{\infty}(\lambda_B \times \lambda_C; H)$

such that

$$\phi(t_1,t_2,t_3) = \langle a(t_1,t_2),b(t_2,t_3) \rangle$$

for a.e. $(t_1, t_2, t_3) \in \sigma(A) \times \sigma(B) \times \sigma(C)$. In this case,

$$\|\Gamma^{A,B,C}(\phi)\colon S^2(\mathcal{H})\times S^2(\mathcal{H})\longrightarrow S^1(\mathcal{H})\|=\inf\|a\|_{\infty}\|b\|_{\infty},$$

where the infimum runs over all pairs (a, b) satisfying (ii).

つへで | / 28 Continuous linear and bilinear Schur multipliers and applications to perturbation theory

 S^1 and complete boundedness of triple operator integrals

MEASURABLE FACTORIZATION

• Let E, F be two Banach spaces, let $\Gamma_2(E, F)$ to be the space $T: E \to F$ which factor through Hilbert space.

 S^1 and complete boundedness of triple operator integrals

MEASURABLE FACTORIZATION

• Let E, F be two Banach spaces, let $\Gamma_2(E, F)$ to be the space $T: E \to F$ which factor through Hilbert space.

• Let (Σ, λ) be a σ -finite measure space and let G be a separable Banach space. Let $L^{\infty}_{\sigma}(\lambda; G^*)$ be the space of functions $\psi: \Sigma \to G^* w^*$ -measurable and essentially bounded.

 S^1 and complete boundedness of triple operator integrals

MEASURABLE FACTORIZATION

• Let E, F be two Banach spaces, let $\Gamma_2(E, F)$ to be the space $T: E \to F$ which factor through Hilbert space.

• Let (Σ, λ) be a σ -finite measure space and let G be a separable Banach space. Let $L^{\infty}_{\sigma}(\lambda; G^*)$ be the space of functions $\psi: \Sigma \to G^* w^*$ -measurable and essentially bounded.

THEOREM (C., LE MERDY, SUKOCHEV)

Let (Ω, μ) be a separable measure space and let E, F be two separable Banach spaces. Let $\phi \in L^{\infty}_{\sigma}(\Omega; \Gamma_2(E, F^*))$. Then there exist a separable Hilbert space H and two functions

 $\alpha \in L^{\infty}_{\sigma}(\Omega; B(E, H))$ and $\beta \in L^{\infty}_{\sigma}(\Omega; B(F, H))$

such that $\|\alpha\|_{\infty}\|\beta\|_{\infty} \leq \|\phi\|_{\infty}$ and for any $(x,y) \in E \times F$,

 $\langle [\phi(t)](x), y \rangle = \langle [\alpha(t)](x), [\beta(t)](y) \rangle, \quad \text{for a.e. } t \in \Omega.$ (2)

イロト 不得下 イヨト イヨト

 S^1 and complete boundedness of triple operator integrals. Measurable factorization

Connection with the theorem :

Regard $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$ as an element of $L^{\infty}_{\sigma}(\lambda_B; L^{\infty}(\lambda_A \times \lambda_C)$ and associate $\psi \in L^{\infty}_{\sigma}(\lambda_B; \mathcal{B}(L^1(\lambda_A); L^{\infty}(\lambda_C)))$

by

$$[\psi(s)](f) = \int_{\sigma(A)} \phi(r,s,\cdot)f(r) \, \mathrm{d}\lambda_A(r)$$

for any $f \in L^1(\lambda_A)$.

S¹ AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS MEASURABLE FACTORIZATION

Connection with the theorem :

Regard $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$ as an element of $L^{\infty}_{\sigma}(\lambda_B; L^{\infty}(\lambda_A \times \lambda_C)$ and associate

$$\psi \in L^{\infty}_{\sigma}(\lambda_{B}; \mathcal{B}(L^{1}(\lambda_{A}); L^{\infty}(\lambda_{C})))$$

by

$$[\psi(s)](f) = \int_{\sigma(A)} \phi(r,s,\cdot)f(r) \ \mathsf{d}\lambda_{\mathcal{A}}(r)$$

for any $f \in L^1(\lambda_A)$.

THEOREM (SECOND FORMULATION)

The following are equivalent :

(I)
$$\Gamma^{A,B,C}(\phi) \in B_2(S^2(\mathcal{H}) \times S^2(\mathcal{H}), S^1(\mathcal{H})).$$

(II) The function ψ associated to ϕ belongs to

 $L^{\infty}_{\sigma}(\lambda_B; \Gamma_2(L^1(\lambda_A); L^{\infty}(\lambda_C))).$

S¹ AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C.)

Let \mathcal{H} be a separable Hilbert space, A, B, C be normal operators on \mathcal{H} and let $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$. The following are equivalent : (1) $\Gamma^{A,B,C}(\phi)$ extends to a completely bounded mapping

$$\Gamma^{A,B,C}(\phi):\mathcal{S}^{\infty}(\mathcal{H})\overset{h}{\otimes}\mathcal{S}^{\infty}(\mathcal{H})\to\mathcal{S}^{\infty}(\mathcal{H})$$

S¹ AND COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

THEOREM (C.)

Let \mathcal{H} be a separable Hilbert space, A, B, C be normal operators on \mathcal{H} and let $\phi \in L^{\infty}(\lambda_A \times \lambda_B \times \lambda_C)$. The following are equivalent : (1) $\Gamma^{A,B,C}(\phi)$ extends to a completely bounded mapping

$$\Gamma^{A,B,C}(\phi):\mathcal{S}^\infty(\mathcal{H})\overset{h}{\otimes}\mathcal{S}^\infty(\mathcal{H}) o\mathcal{S}^\infty(\mathcal{H})$$

(II) There exist a separable Hilbert space H, $a \in L^{\infty}(\lambda_A; H), b \in L^{\infty}_{\sigma}(\lambda_B; \mathcal{B}(H))$ and $c \in L^{\infty}(\lambda_C; H)$ such that

$$\phi(t_1, t_2, t_3) = \langle [b(t_2)](a(t_1)), c(t_3) \rangle$$

for a.e. $(t_1, t_2, t_3) \in \sigma(A) \times \sigma(B) \times \sigma(C)$. In this case,

$$\left\| \Gamma^{A,B,C}(\phi) \right\| = \inf \|a\|_{\infty} \|b\|_{\infty} \|c\|_{\infty}.$$
(3)

27 / 28

 S^1 and complete boundedness of triple operator integrals

COMPLETE BOUNDEDNESS OF TRIPLE OPERATOR INTEGRALS

Thank you for your attention !